-
-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Improve error messages for unexpected keyword arguments in overloaded functions #20592
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Draft
KevinRK29
wants to merge
5
commits into
python:master
Choose a base branch
from
KevinRK29:improve-overloaded-error-messages
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Draft
Improve error messages for unexpected keyword arguments in overloaded functions #20592
KevinRK29
wants to merge
5
commits into
python:master
from
KevinRK29:improve-overloaded-error-messages
+97
−1
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Contributor
|
Diff from mypy_primer, showing the effect of this PR on open source code: spark (https://github.com/apache/spark)
+ python/pyspark/pandas/namespace.py:1140: error: Unexpected keyword argument "date_parser" for overloaded function "read_excel" defined on line 51 [call-overload]
- python/pyspark/pandas/namespace.py:1140: error: No overload variant of "read_excel" matches argument types "BytesIO | Any", "str | int | list[str | int] | None", "int | list[int]", "list[Any] | None", "list[int] | None", "int | str | list[int | str] | Callable[[str], bool] | None", "dict[str, str | dtype[Any] | ExtensionDtype] | None", "str | None", "dict[Any, Any] | None", "Any | None", "Any | None", "int | list[int] | None", "int | None", "Any | None", "bool", "bool", "bool | list[Any] | dict[Any, Any]", "Callable[..., Any] | None", "str | None", "str | None", "int", "dict[str, Any]" [call-overload]
- python/pyspark/pandas/namespace.py:1140: note: Possible overload variants:
- python/pyspark/pandas/namespace.py:1140: note: def [IntStrT: (int, str)] read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[IntStrT], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[tuple[Any, ...], dtype[Any]] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[Any], Any]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] | None = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ..., engine_kwargs: dict[str, Any] | None = ...) -> dict[IntStrT, DataFrame]
- python/pyspark/pandas/namespace.py:1140: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: None, *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[tuple[Any, ...], dtype[Any]] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[Any], Any]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] | None = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ..., engine_kwargs: dict[str, Any] | None = ...) -> dict[str, DataFrame]
- python/pyspark/pandas/namespace.py:1140: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[int | str], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[tuple[Any, ...], dtype[Any]] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[Any], Any]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] | None = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ..., engine_kwargs: dict[str, Any] | None = ...) -> dict[int | str, DataFrame]
- python/pyspark/pandas/namespace.py:1140: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: int | str = ..., *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[tuple[Any, ...], dtype[Any]] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[complex] | type[bool] | type[object] | type[str]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[Any], Any]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] | None = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ..., engine_kwargs: dict[str, Any] | None = ...) -> DataFrame
prefect (https://github.com/PrefectHQ/prefect)
+ src/prefect/futures.py:222: error: Unexpected keyword argument "_sync" for overloaded function "result" of "State" defined on line 293 [call-overload]
- src/prefect/futures.py:222: error: No overload variant of "result" of "State" matches argument types "bool", "bool" [call-overload]
- src/prefect/futures.py:222: note: Possible overload variants:
- src/prefect/futures.py:222: note: def result(self, raise_on_failure: Literal[True] = ..., retry_result_failure: bool = ...) -> Any
- src/prefect/futures.py:222: note: def result(self, raise_on_failure: Literal[False] = ..., retry_result_failure: bool = ...) -> Any | Exception
- src/prefect/futures.py:222: note: def result(self, raise_on_failure: bool = ..., retry_result_failure: bool = ...) -> Any | Exception
- src/prefect/futures.py:222: note: def result(self, raise_on_failure: Literal[True] = ..., retry_result_failure: bool = ...) -> R
- src/prefect/futures.py:222: note: def result(self, raise_on_failure: Literal[False] = ..., retry_result_failure: bool = ...) -> R | Exception
- src/prefect/futures.py:222: note: def result(self, raise_on_failure: bool = ..., retry_result_failure: bool = ...) -> R | Exception
+ src/prefect/utilities/engine.py:764: error: Unexpected keyword argument "_sync" for overloaded function "result" of "State" defined on line 293 [call-overload]
- src/prefect/utilities/engine.py:764: error: No overload variant of "result" of "State" matches argument types "bool", "bool" [call-overload]
- src/prefect/utilities/engine.py:764: note: Possible overload variants:
- src/prefect/utilities/engine.py:764: note: def result(self, raise_on_failure: Literal[True] = ..., retry_result_failure: bool = ...) -> Any
- src/prefect/utilities/engine.py:764: note: def result(self, raise_on_failure: Literal[False] = ..., retry_result_failure: bool = ...) -> Any | Exception
- src/prefect/utilities/engine.py:764: note: def result(self, raise_on_failure: bool = ..., retry_result_failure: bool = ...) -> Any | Exception
- src/prefect/task_engine.py:529: error: No overload variant of "result" of "State" matches argument types "bool", "bool" [call-overload]
+ src/prefect/task_engine.py:529: error: Unexpected keyword argument "_sync" for overloaded function "result" of "State" defined on line 293 [call-overload]
- src/prefect/task_engine.py:529: note: Possible overload variants:
- src/prefect/task_engine.py:529: note: def result(self, raise_on_failure: Literal[True] = ..., retry_result_failure: bool = ...) -> R
- src/prefect/task_engine.py:529: note: def result(self, raise_on_failure: Literal[False] = ..., retry_result_failure: bool = ...) -> R | Exception
- src/prefect/task_engine.py:529: note: def result(self, raise_on_failure: bool = ..., retry_result_failure: bool = ...) -> R | Exception
scipy (https://github.com/scipy/scipy)
- scipy/sparse/linalg/tests/test_interface.py:306: error: No overload variant of "__call__" of "_GUFunc_Nin2_Nout1" matches argument types "Any", "Any", "int" [call-overload]
+ scipy/sparse/linalg/tests/test_interface.py:306: error: Unexpected keyword argument "axis" for overloaded function "__call__" of "_GUFunc_Nin2_Nout1" [call-overload]
- scipy/sparse/linalg/tests/test_interface.py:307: error: No overload variant of "__call__" of "_GUFunc_Nin2_Nout1" matches argument types "Any", "Any", "int" [call-overload]
+ scipy/sparse/linalg/tests/test_interface.py:307: error: Unexpected keyword argument "axis" for overloaded function "__call__" of "_GUFunc_Nin2_Nout1" [call-overload]
xarray (https://github.com/pydata/xarray)
+ xarray/tests/test_plot.py:1167: error: Unexpected keyword argument "start" for overloaded function "arange" defined on line 968 [call-overload]
+ xarray/tests/test_plot.py:1168: error: Unexpected keyword argument "start" for overloaded function "arange" defined on line 968 [call-overload]
- xarray/tests/test_plot.py:1167: error: No overload variant of "arange" matches argument types "int", "int", "int" [call-overload]
- xarray/tests/test_plot.py:1167: note: Possible overload variants:
- xarray/tests/test_plot.py:1167: note: def [_ArangeScalarT: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None]] arange(integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float, /, stop: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., step: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., *, dtype: type[_ArangeScalarT] | dtype[_ArangeScalarT] | _HasDType[dtype[_ArangeScalarT]] | _HasNumPyDType[dtype[_ArangeScalarT]], device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[_ArangeScalarT]]
- xarray/tests/test_plot.py:1167: note: def arange(int | integer[Any] | numpy.bool[builtins.bool], /, stop: int | integer[Any] | numpy.bool[builtins.bool] | None = ..., step: int | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[int] | type[signedinteger[_32Bit | _64Bit]] | dtype[signedinteger[_32Bit | _64Bit]] | _HasDType[dtype[signedinteger[_32Bit | _64Bit]]] | _HasNumPyDType[dtype[signedinteger[_32Bit | _64Bit]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[signedinteger[_32Bit | _64Bit]]]
- xarray/tests/test_plot.py:1167: note: def arange(float | floating[Any], /, stop: float | floating[Any] | integer[Any] | numpy.bool[builtins.bool] | None = ..., step: float | floating[Any] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[float] | type[float64] | dtype[float64] | _HasDType[dtype[float64]] | _HasNumPyDType[dtype[float64]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[float64 | Any]]
- xarray/tests/test_plot.py:1167: note: def arange(float | floating[Any] | integer[Any] | numpy.bool[builtins.bool], /, stop: float | floating[Any], step: float | floating[Any] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[float] | type[float64] | dtype[float64] | _HasDType[dtype[float64]] | _HasNumPyDType[dtype[float64]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[float64 | Any]]
- xarray/tests/test_plot.py:1167: note: def arange(timedelta64[timedelta | int | None], /, stop: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., step: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[timedelta64[timedelta | int | None]] | dtype[timedelta64[timedelta | int | None]] | _HasDType[dtype[timedelta64[timedelta | int | None]]] | _HasNumPyDType[dtype[timedelta64[timedelta | int | None]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[timedelta64[Any]]]
- xarray/tests/test_plot.py:1167: note: def arange(int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool], /, stop: timedelta64[timedelta | int | None], step: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[timedelta64[timedelta | int | None]] | dtype[timedelta64[timedelta | int | None]] | _HasDType[dtype[timedelta64[timedelta | int | None]]] | _HasNumPyDType[dtype[timedelta64[timedelta | int | None]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[timedelta64[Any]]]
- xarray/tests/test_plot.py:1167: note: def arange(datetime64[date | int | None], /, stop: datetime64[date | int | None], step: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[datetime64[date | int | None]] | dtype[datetime64[date | int | None]] | _HasDType[dtype[datetime64[date | int | None]]] | _HasNumPyDType[dtype[datetime64[date | int | None]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[datetime64[Any]]]
- xarray/tests/test_plot.py:1167: note: def arange(integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float, /, stop: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., step: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., *, dtype: type[Any] | dtype[Any] | _HasDType[dtype[Any]] | _HasNumPyDType[dtype[Any]] | tuple[Any, Any] | list[Any] | _DTypeDict | str | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[Any]]
- xarray/tests/test_plot.py:1168: error: No overload variant of "arange" matches argument types "int", "int", "int" [call-overload]
- xarray/tests/test_plot.py:1168: note: Possible overload variants:
- xarray/tests/test_plot.py:1168: note: def [_ArangeScalarT: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None]] arange(integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float, /, stop: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., step: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., *, dtype: type[_ArangeScalarT] | dtype[_ArangeScalarT] | _HasDType[dtype[_ArangeScalarT]] | _HasNumPyDType[dtype[_ArangeScalarT]], device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[_ArangeScalarT]]
- xarray/tests/test_plot.py:1168: note: def arange(int | integer[Any] | numpy.bool[builtins.bool], /, stop: int | integer[Any] | numpy.bool[builtins.bool] | None = ..., step: int | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[int] | type[signedinteger[_32Bit | _64Bit]] | dtype[signedinteger[_32Bit | _64Bit]] | _HasDType[dtype[signedinteger[_32Bit | _64Bit]]] | _HasNumPyDType[dtype[signedinteger[_32Bit | _64Bit]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[signedinteger[_32Bit | _64Bit]]]
- xarray/tests/test_plot.py:1168: note: def arange(float | floating[Any], /, stop: float | floating[Any] | integer[Any] | numpy.bool[builtins.bool] | None = ..., step: float | floating[Any] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[float] | type[float64] | dtype[float64] | _HasDType[dtype[float64]] | _HasNumPyDType[dtype[float64]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[float64 | Any]]
- xarray/tests/test_plot.py:1168: note: def arange(float | floating[Any] | integer[Any] | numpy.bool[builtins.bool], /, stop: float | floating[Any], step: float | floating[Any] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[float] | type[float64] | dtype[float64] | _HasDType[dtype[float64]] | _HasNumPyDType[dtype[float64]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[float64 | Any]]
- xarray/tests/test_plot.py:1168: note: def arange(timedelta64[timedelta | int | None], /, stop: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., step: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[timedelta64[timedelta | int | None]] | dtype[timedelta64[timedelta | int | None]] | _HasDType[dtype[timedelta64[timedelta | int | None]]] | _HasNumPyDType[dtype[timedelta64[timedelta | int | None]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[timedelta64[Any]]]
- xarray/tests/test_plot.py:1168: note: def arange(int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool], /, stop: timedelta64[timedelta | int | None], step: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[timedelta64[timedelta | int | None]] | dtype[timedelta64[timedelta | int | None]] | _HasDType[dtype[timedelta64[timedelta | int | None]]] | _HasNumPyDType[dtype[timedelta64[timedelta | int | None]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[timedelta64[Any]]]
- xarray/tests/test_plot.py:1168: note: def arange(datetime64[date | int | None], /, stop: datetime64[date | int | None], step: int | timedelta64[timedelta | int | None] | integer[Any] | numpy.bool[builtins.bool] | None = ..., *, dtype: type[datetime64[date | int | None]] | dtype[datetime64[date | int | None]] | _HasDType[dtype[datetime64[date | int | None]]] | _HasNumPyDType[dtype[datetime64[date | int | None]]] | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[datetime64[Any]]]
- xarray/tests/test_plot.py:1168: note: def arange(integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float, /, stop: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., step: integer[Any] | floating[Any] | datetime64[date | int | None] | timedelta64[timedelta | int | None] | float | None = ..., *, dtype: type[Any] | dtype[Any] | _HasDType[dtype[Any]] | _HasNumPyDType[dtype[Any]] | tuple[Any, Any] | list[Any] | _DTypeDict | str | None = ..., device: Literal['cpu'] | None = ..., like: _SupportsArrayFunc | None = ...) -> ndarray[tuple[int], dtype[Any]]
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR improves error messages when calling overloaded functions with unexpected keyword arguments, making it easier to identify and fix typos.
Changes
best_matchesfuzzy matching)