Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pandas/_libs/lib.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -165,6 +165,7 @@ def maybe_indices_to_slice(
indices: npt.NDArray[np.intp],
max_len: int,
) -> slice | npt.NDArray[np.intp]: ...
def is_all_scalar(obj: list | tuple) -> bool: ...
def is_all_arraylike(obj: list) -> bool: ...

# -----------------------------------------------------------------
Expand Down
18 changes: 18 additions & 0 deletions pandas/_libs/lib.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -862,6 +862,24 @@ cpdef ndarray[object] ensure_string_array(
return result


def is_all_scalar(obj: list | tuple) -> bool:
cdef:
Py_ssize_t i, n = len(obj)
object temp

all_scalars = True

for i in range(n):
temp = obj[i]
if isinstance(temp, (bytes, str)):
continue
elif hasattr(temp, "__iter__"):
all_scalars = False
break

return all_scalars


def is_all_arraylike(obj: list) -> bool:
"""
Should we treat these as levels of a MultiIndex, as opposed to Index items?
Expand Down
5 changes: 5 additions & 0 deletions pandas/core/construction.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,6 +321,11 @@ def array(
return data.copy()
return data

# to avoid returning an array of string representation of objects.
if isinstance(dtype, StringDtype) and isinstance(data, (list, tuple)):
if not lib.is_all_scalar(data):
raise TypeError("Values must be a 1D list-like")

if isinstance(dtype, ExtensionDtype):
cls = dtype.construct_array_type()
return cls._from_sequence(data, dtype=dtype, copy=copy)
Expand Down
6 changes: 6 additions & 0 deletions pandas/tests/arrays/test_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -460,6 +460,12 @@ def test_nd_raises(data):
pd.array(data, dtype="int64")


@pytest.mark.parametrize("data", [[["a"], ["b"]]])
def test_not_1D_like_raises(data):
with pytest.raises(TypeError, match="Values must be a 1D list-like"):
pd.array(data, dtype=pd.StringDtype())


def test_scalar_raises():
with pytest.raises(ValueError, match="Cannot pass scalar '1'"):
pd.array(1)
Expand Down
Loading