-
-
Notifications
You must be signed in to change notification settings - Fork 19.3k
BUG: for ordered categorical data implements correct computation of kendall/spearman correlations #62880
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
BUG: for ordered categorical data implements correct computation of kendall/spearman correlations #62880
Changes from all commits
1f8c628
906f1e4
497dc7e
583aca6
e069810
b90726f
65a506c
ab3b8b9
e93ed83
ec4d97e
ebfc3b0
8cfacef
7ef7fb2
588808a
c484552
216475c
e997747
4184167
8bcd3dc
2673281
ff48847
1c69e29
8b26a7d
a625520
259424e
f141e6a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,32 @@ | ||
| """ | ||
| Module for correlation related implementation | ||
| """ | ||
|
|
||
| from __future__ import annotations | ||
|
|
||
| from typing import TYPE_CHECKING | ||
|
|
||
| import numpy as np | ||
|
|
||
| from pandas.core.dtypes.dtypes import CategoricalDtype | ||
|
|
||
| if TYPE_CHECKING: | ||
| from pandas import DataFrame | ||
|
|
||
|
|
||
| def transform_ord_cat_cols_to_coded_cols(df: DataFrame) -> DataFrame: | ||
| """ | ||
| Replace ordered categoricals with their codes, making a shallow copy if necessary. | ||
| """ | ||
|
|
||
| result = df | ||
| made_copy = False | ||
| for idx, dtype in enumerate(df.dtypes): | ||
| if not isinstance(dtype, CategoricalDtype) or not dtype.ordered: | ||
| continue | ||
| col = result._ixs(idx, axis=1) | ||
| if not made_copy: | ||
| made_copy = True | ||
| result = result.copy(deep=False) | ||
| result._iset_item(idx, col.cat.codes.replace(-1, np.nan)) | ||
| return result |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,147 @@ | ||
| """ | ||
| Tests for core/methods/corr.py | ||
| """ | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
|
|
||
| from pandas import ( | ||
| Categorical, | ||
| DataFrame, | ||
| Series, | ||
| ) | ||
| import pandas._testing as tm | ||
| from pandas.core.methods.corr import transform_ord_cat_cols_to_coded_cols | ||
|
|
||
|
|
||
| @pytest.mark.parametrize( | ||
| ("input_df", "expected_df"), | ||
| [ | ||
| pytest.param( | ||
| # 1) Simple: two ordered categorical columns (with and without None) | ||
| DataFrame( | ||
| { | ||
| "ord_cat": Series( | ||
| Categorical( | ||
| ["low", "m", "h", "vh"], | ||
| categories=["low", "m", "h", "vh"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "ord_cat_none": Series( | ||
| Categorical( | ||
| ["low", "m", "h", None], | ||
| categories=["low", "m", "h"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| } | ||
| ), | ||
| DataFrame( | ||
| { | ||
| # codes: low=0, m=1, h=2, vh=3 | ||
| "ord_cat": Series([0, 1, 2, 3], dtype="int8"), | ||
| # codes: low=0, m=1, h=2, None -> NaN | ||
| "ord_cat_none": Series([0, 1.0, 2.0, np.nan]), | ||
| } | ||
| ), | ||
| id="ordered-categoricals-basic", | ||
| ), | ||
| pytest.param( | ||
| # 2) Mixed dtypes: only the ordered categorical should change | ||
| DataFrame( | ||
| { | ||
| "ordered": Series( | ||
| Categorical( | ||
| ["a", "c", "b"], | ||
| categories=["a", "b", "c"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "unordered": Series(Categorical(["x", "y", "x"], ordered=False)), | ||
| "num": Series([10, 20, 30]), | ||
| "text": Series(["u", "v", "w"]), | ||
| } | ||
| ), | ||
| DataFrame( | ||
| { | ||
| # codes: a=0, c=2, b=1 | ||
| "ordered": Series([0, 2, 1], dtype="int8"), | ||
| # unordered categorical should be untouched (still categorical) | ||
| "unordered": Series(Categorical(["x", "y", "x"], ordered=False)), | ||
| "num": Series([10, 20, 30]), | ||
| "text": Series(["u", "v", "w"]), | ||
| } | ||
| ), | ||
| id="mixed-types-only-ordered-changes", | ||
| ), | ||
| pytest.param( | ||
| # 3 Duplicate column names: first 'dup' is ordered categorical, | ||
| # second 'dup' is non-categorical | ||
| DataFrame( | ||
| { | ||
| "dup_1": Series( | ||
| Categorical( | ||
| ["low", "m", "h"], | ||
| categories=["low", "m", "h"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "dup_2": Series([5, 6, 7]), # duplicate name, later column | ||
| } | ||
| ), | ||
| DataFrame( | ||
| { | ||
| # After transform: position 0 (ordered cat) becomes codes [0,1,2], | ||
| # position 1 remains untouched numbers [5,6,7]. | ||
| "dup_1": Series([0, 1, 2], dtype="int8"), | ||
| "dup_2": Series([5, 6, 7]), | ||
| } | ||
| ), | ||
| id="duplicate-names-ordered-first", | ||
| ), | ||
| pytest.param( | ||
| # 4 Duplicate column names: first 'dup' is non-categorical, | ||
| # second 'dup' is ordered categorical, third 'dup' is ordered categorical | ||
| DataFrame( | ||
| { | ||
| "dup_1": Series(["a", "b", "c"]), # non-categorical (object) | ||
| "dup_2": Series( | ||
| Categorical( | ||
| ["p", "q", None], | ||
| categories=["p", "q"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "dup_3": Series( | ||
| Categorical( | ||
| ["low", "m", "h"], | ||
| categories=["low", "m", "h"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| } | ||
| ), | ||
| DataFrame( | ||
| { | ||
| # First stays object; second turns into codes [0, 1, NaN] | ||
| # and third changes into codes [0, 1, 2] | ||
| "dup_1": Series(["a", "b", "c"]), | ||
| "dup_2": Series([0.0, 1.0, np.nan]), | ||
| "dup_3": Series([0, 1, 2], dtype="int8"), | ||
| } | ||
| ), | ||
| id="duplicate-names-ordered-and-non-categorical-and-none", | ||
| ), | ||
| ], | ||
| ) | ||
| def test_transform_ord_cat_cols_to_coded_cols(input_df, expected_df): | ||
| # duplicate columns creation for dup columns | ||
| if "dup_1" in input_df.columns: | ||
| input_df.columns = ["dup" for _ in range(len(input_df.columns))] | ||
| expected_df.columns = ["dup" for _ in range(len(expected_df.columns))] | ||
|
|
||
| out_df = transform_ord_cat_cols_to_coded_cols(input_df) | ||
| assert list(out_df.columns) == list(expected_df.columns) | ||
| for i, col in enumerate(out_df.columns): | ||
| tm.assert_series_equal(out_df.iloc[:, i], expected_df.iloc[:, i]) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -184,3 +184,47 @@ def test_corr_callable_method(self, datetime_series): | |
| df = pd.DataFrame([s1, s2]) | ||
| expected = pd.DataFrame([{0: 1.0, 1: 0}, {0: 0, 1: 1.0}]) | ||
| tm.assert_almost_equal(df.transpose().corr(method=my_corr), expected) | ||
|
|
||
| @pytest.mark.parametrize("method", ["kendall", "spearman"]) | ||
| @pytest.mark.parametrize( | ||
| "cat_series", | ||
| [ | ||
| Series( | ||
| pd.Categorical( # ordered cat series | ||
| ["low", "medium", "high"], | ||
| categories=["low", "medium", "high"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| Series( | ||
| pd.Categorical( # ordered cat series with NA | ||
| ["low", "medium", "high", None], | ||
| categories=["low", "medium", "high"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| ], | ||
| ) | ||
| @pytest.mark.parametrize( | ||
| "other_series", | ||
| [ | ||
| Series( # other cat ordered series | ||
| pd.Categorical( | ||
| ["m", "l", "h"], | ||
| categories=["l", "m", "h"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| # other non cat series | ||
| Series([2, 1, 3]), | ||
| ], | ||
| ) | ||
| def test_corr_rank_ordered_categorical( | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This test is pretty long, to the point where its unclear what its intent is. Maybe its worth breaking up into a few tests? Or adding parameterization?
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. fixed |
||
| self, | ||
| method, | ||
| cat_series, | ||
| other_series, | ||
| ): | ||
| expected_corr = {"kendall": 0.33333333333333337, "spearman": 0.5} | ||
| corr_calc = cat_series.corr(other_series, method=method) | ||
| tm.assert_almost_equal(corr_calc, expected_corr[method]) | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't think this test is necessary; your other tests are sufficient.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this function in itself can also be potentially used for things other than correlation as it is a specific type of transformation. Correlation is one use case of transforming to these codes, so to me it seems like this function should be anyway tested for what it is supposed to do irrespective of its use in correlation. Please lmk what do you think.