Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
880 changes: 440 additions & 440 deletions doc/sphinx/algorithms.json

Large diffs are not rendered by default.

880 changes: 440 additions & 440 deletions doc/sphinx/source/algorithms.rst

Large diffs are not rendered by default.

11 changes: 11 additions & 0 deletions doc/sphinx/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@

extensions = [
"sphinx.ext.autodoc", # include docs from docstrings
"sphinx.ext.intersphinx", # link to other projects' documentation such as neo4j driver or pyArrow
"enum_tools.autoenum", # specialised autoclass for enums
"sphinx.ext.napoleon", # Support for NumPy and Google style docstrings
"sphinxcontrib.autodoc_pydantic", # Support for Pydantic models
Expand Down Expand Up @@ -60,6 +61,16 @@ def setup(app): # type: ignore
app.add_js_file("js/deprecated.js", loading_method="defer")


intersphinx_mapping = {
"python": ("https://docs.python.org/3", None),
"neo4j": ("https://neo4j.com/docs/api/python-driver/current/", None),
"dateutil": ("https://dateutil.readthedocs.io/en/stable/", None),
"numpy": ("https://numpy.org/doc/stable/", None),
"pandas": ("https://pandas.pydata.org/docs/", None),
"pyarrow": ("https://arrow.apache.org/docs/", None),
"networkx": ("https://networkx.org/documentation/stable/", None),
}

rst_epilog = """
.. |api-version| replace:: {versionnum}
""".format(
Expand Down
84 changes: 42 additions & 42 deletions doc/sphinx/source/graph.rst

Large diffs are not rendered by default.

18 changes: 9 additions & 9 deletions doc/sphinx/source/misc.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ This includes procedures for configuring the library.
These all assume that an object of :class:`.GraphDataScience` is available as `gds`.


.. py:function:: gds.alpha.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
.. py:function:: gds.alpha.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame

List defaults; global by default, but also optionally for a specific user and/ or key
.. deprecated:: 2.5.0
Expand All @@ -17,7 +17,7 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.config.defaults.set` instead.

.. py:function:: gds.alpha.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
.. py:function:: gds.alpha.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame

List limits; global by default, but also optionally for a specific user and/ or key
.. deprecated:: 2.5.0
Expand All @@ -28,15 +28,15 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
Set a limit; global by, default, but also optionally for a specific user
.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.config.limits.set` instead.
.. py:function:: gds.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
.. py:function:: gds.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame

List defaults; global by default, but also optionally for a specific user and/ or key

.. py:function:: gds.config.defaults.set(key: str, value: Any, username: Optional[str] = None) -> None

Set a default; global by, default, but also optionally for a specific user

.. py:function:: gds.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
.. py:function:: gds.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame

List limits; global by default, but also optionally for a specific user and/ or key

Expand All @@ -49,21 +49,21 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.systemMonitor` instead.

.. py:function:: gds.alpha.userLog() -> DataFrame
.. py:function:: gds.alpha.userLog() -> pandas.DataFrame
Log warnings and hints for currently running tasks.
.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.userLog` instead.

.. py:function:: gds.beta.listProgress(job_id: Optional[str] = None) -> DataFrame
.. py:function:: gds.beta.listProgress(job_id: Optional[str] = None) -> pandas.DataFrame
List progress events for currently running tasks.
.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.listProgress` instead.
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.listProgress` instead.

.. py:function:: gds.systemMonitor() -> Series[Any]

Get an overview of the system's workload and available resources

.. py:function:: gds.listProgress(job_id: Optional[str] = None) -> DataFrame
.. py:function:: gds.listProgress(job_id: Optional[str] = None) -> pandas.DataFrame

List progress events for currently running tasks.

Expand Down Expand Up @@ -111,5 +111,5 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g

Return True if the graph data science library is licensed.

.. py:function:: gds.userLog() -> DataFrame
.. py:function:: gds.userLog() -> pandas.DataFrame
Log warnings and hints for currently running tasks.
98 changes: 49 additions & 49 deletions doc/sphinx/source/ml.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,241 +9,241 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g

Get a pipeline object representing a pipeline in the Pipeline Catalog.

.. py:function:: gds.alpha.ml.splitRelationships.mutate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.alpha.ml.splitRelationships.mutate(G: Graph, **config: Any) -> pandas.Series[Any]

Splits a graph into holdout and remaining relationship types and adds them to the graph.

.. py:function:: gds.alpha.ml.splitRelationships.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.alpha.ml.splitRelationships.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Splits a graph into holdout and remaining relationship types and adds them to the graph.

.. py:function:: gds.alpha.pipeline.nodeRegression.create(name: str) -> Tuple[NRTrainingPipeline, Series[Any]]
.. py:function:: gds.alpha.pipeline.nodeRegression.create(name: str) -> Tuple[NRTrainingPipeline, pandas.Series[Any]]

Creates a node regression training pipeline in the pipeline catalog.

.. py:function:: gds.beta.graphSage.mutate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.graphSage.mutate(G: Graph, **config: Any) -> pandas.Series[Any]

The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.

.. py:function:: gds.beta.graphSage.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.graphSage.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.

.. py:function:: gds.beta.graphSage.stream(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.beta.graphSage.stream(G: Graph, **config: Any) -> pandas.DataFrame

The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.

.. py:function:: gds.beta.graphSage.stream.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.graphSage.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.beta.graphSage.train(G: Graph, **config: Any) -> Tuple[MODEL_TYPE, Series[Any]]
.. py:function:: gds.beta.graphSage.train(G: Graph, **config: Any) -> Tuple[MODEL_TYPE, pandas.Series[Any]]

The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.

.. py:function:: gds.beta.graphSage.train.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.graphSage.train.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.beta.graphSage.write(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.graphSage.write(G: Graph, **config: Any) -> pandas.Series[Any]

The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.

.. py:function:: gds.beta.graphSage.write.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.graphSage.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.mutate` instead.

.. py:function:: gds.beta.hashgnn.mutate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.hashgnn.mutate(G: Graph, **config: Any) -> pandas.Series[Any]

HashGNN creates node embeddings by hashing and message passing.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.mutate.estimate` instead.

.. py:function:: gds.beta.hashgnn.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.hashgnn.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

HashGNN creates node embeddings by hashing and message passing.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.stream` instead.

.. py:function:: gds.beta.hashgnn.stream(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.beta.hashgnn.stream(G: Graph, **config: Any) -> pandas.DataFrame

HashGNN creates node embeddings by hashing and message passing.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.stream.estimate` instead.

.. py:function:: gds.beta.hashgnn.stream.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.hashgnn.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

HashGNN creates node embeddings by hashing and message passing.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.mutate` instead.

.. py:function:: gds.beta.node2vec.mutate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.node2vec.mutate(G: Graph, **config: Any) -> pandas.Series[Any]

The Node2Vec algorithm computes embeddings for nodes based on random walks.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.mutate.estimate` instead.

.. py:function:: gds.beta.node2vec.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.node2vec.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.stream` instead.

.. py:function:: gds.beta.node2vec.stream(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.beta.node2vec.stream(G: Graph, **config: Any) -> pandas.DataFrame

The Node2Vec algorithm computes embeddings for nodes based on random walks.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.stream.estimate` instead.

.. py:function:: gds.beta.node2vec.stream.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.node2vec.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.write` instead.

.. py:function:: gds.beta.node2vec.write(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.node2vec.write(G: Graph, **config: Any) -> pandas.Series[Any]

The Node2Vec algorithm computes embeddings for nodes based on random walks.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.write.estimate` instead.

.. py:function:: gds.beta.node2vec.write.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.beta.node2vec.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> Series[Any]
.. py:function:: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> pandas.Series[Any]

Drops a pipeline and frees up the resources it occupies.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.pipeline.drop` instead.

.. py:function:: gds.beta.pipeline.exists(pipeline_name: str) -> Series[Any]
.. py:function:: gds.beta.pipeline.exists(pipeline_name: str) -> pandas.Series[Any]

Checks if a given pipeline exists in the pipeline catalog.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.pipeline.exists` instead.

.. py:function:: gds.beta.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> DataFrame
.. py:function:: gds.beta.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> pandas.DataFrame

Lists all pipelines contained in the pipeline catalog.

.. deprecated:: 2.5.0
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.pipeline.list` instead.

.. py:function:: gds.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> Series[Any]
.. py:function:: gds.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> pandas.Series[Any]

Drops a pipeline and frees up the resources it occupies.

.. py:function:: gds.pipeline.exists(pipeline_name: str) -> Series[Any]
.. py:function:: gds.pipeline.exists(pipeline_name: str) -> pandas.Series[Any]

Checks if a given pipeline exists in the pipeline catalog.

.. py:function:: gds.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> DataFrame
.. py:function:: gds.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> pandas.DataFrame

Lists all pipelines contained in the pipeline catalog.

.. py:function:: gds.beta.pipeline.linkPrediction.create(name: str) -> Tuple[LPTrainingPipeline, Series[Any]]
.. py:function:: gds.beta.pipeline.linkPrediction.create(name: str) -> Tuple[LPTrainingPipeline, pandas.Series[Any]]

Creates a link prediction pipeline in the pipeline catalog.

.. py:function:: gds.beta.pipeline.nodeClassification.create(name: str) -> Tuple[NCTrainingPipeline, Series[Any]]
.. py:function:: gds.beta.pipeline.nodeClassification.create(name: str) -> Tuple[NCTrainingPipeline, pandas.Series[Any]]

Creates a node classification training pipeline in the pipeline catalog.

.. py:function:: gds.fastRP.mutate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.fastRP.mutate(G: Graph, **config: Any) -> pandas.Series[Any]

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.fastRP.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.fastRP.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.fastRP.stats(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.fastRP.stats(G: Graph, **config: Any) -> pandas.Series[Any]

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.fastRP.stats.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.fastRP.stats.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.fastRP.stream(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.fastRP.stream(G: Graph, **config: Any) -> pandas.DataFrame

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.fastRP.stream.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.fastRP.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.fastRP.write(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.fastRP.write(G: Graph, **config: Any) -> pandas.Series[Any]

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.fastRP.write.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.fastRP.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Random Projection produces node embeddings via the fastrp algorithm

.. py:function:: gds.alpha.ml.oneHotEncoding(available_values: List[Any], selected_values: List[Any]) -> List[int]

Return a list of selected values in a one hot encoding format.

.. py:function:: gds.hashgnn.mutate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.hashgnn.mutate(G: Graph, **config: Any) -> pandas.Series[Any]

HashGNN creates node embeddings by hashing and message passing.

.. py:function:: gds.hashgnn.mutate.estimate(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.hashgnn.mutate.estimate(G: Graph, **config: Any) -> pandas.DataFrame

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.hashgnn.stream(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.hashgnn.stream(G: Graph, **config: Any) -> pandas.DataFrame

HashGNN creates node embeddings by hashing and message passing.

.. py:function:: gds.hashgnn.stream.estimate(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.hashgnn.stream.estimate(G: Graph, **config: Any) -> pandas.DataFrame

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.hashgnn.write(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.hashgnn.write(G: Graph, **config: Any) -> pandas.DataFrame

HashGNN creates node embeddings by hashing and message passing.

.. py:function:: gds.hashgnn.write.estimate(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.hashgnn.write.estimate(G: Graph, **config: Any) -> pandas.DataFrame

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.node2vec.mutate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.node2vec.mutate(G: Graph, **config: Any) -> pandas.Series[Any]

The Node2Vec algorithm computes embeddings for nodes based on random walks.

.. py:function:: gds.node2vec.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.node2vec.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.node2vec.stream(G: Graph, **config: Any) -> DataFrame
.. py:function:: gds.node2vec.stream(G: Graph, **config: Any) -> pandas.DataFrame

The Node2Vec algorithm computes embeddings for nodes based on random walks.

.. py:function:: gds.node2vec.stream.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.node2vec.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.

.. py:function:: gds.node2vec.write(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.node2vec.write(G: Graph, **config: Any) -> pandas.Series[Any]

The Node2Vec algorithm computes embeddings for nodes based on random walks.

.. py:function:: gds.node2vec.write.estimate(G: Graph, **config: Any) -> Series[Any]
.. py:function:: gds.node2vec.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]

Returns an estimation of the memory consumption for that procedure.
Loading