-
Notifications
You must be signed in to change notification settings - Fork 1.1k
[New Feasture]: Add a FLOPs collection interface #1302
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
mahaocong90
wants to merge
2
commits into
modelscope:main
Choose a base branch
from
mahaocong90:dev-caculate-flops-for-wan-training
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+299
−5
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,6 @@ | ||
| from .flops_profiler import ( | ||
| profile_entire_model, | ||
| unprofile_entire_model, | ||
| get_flops, | ||
| print_model_profile, | ||
| ) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,230 @@ | ||
| import torch | ||
| import torch.nn as nn | ||
| from functools import wraps | ||
| import time | ||
| from torch.utils.flop_counter import conv_flop_count | ||
|
|
||
| def get_flops(model): | ||
| def get_module_flops(module): | ||
| if not hasattr(module, "__flops__"): | ||
| module.__flops__ = 0 | ||
|
|
||
| flops = module.__flops__ | ||
| # iterate over immediate children modules | ||
| for child in module.children(): | ||
| flops += get_module_flops(child) | ||
| return flops | ||
|
|
||
| t5_flops = 0 | ||
| wan_flops = 0 | ||
| vae_flops = 0 | ||
| for module in model.modules(): | ||
| if module.__class__.__name__ == 'WanTextEncoder': | ||
| t5_flops = get_module_flops(module) | ||
| if module.__class__.__name__ == 'WanModel': | ||
| wan_flops = get_module_flops(module) | ||
| if module.__class__.__name__ == 'WanVideoVAE38': | ||
| vae_flops = get_module_flops(module) | ||
| return t5_flops / 1e12, wan_flops / 1e12, vae_flops / 1e12 | ||
|
|
||
| def print_model_profile(model): | ||
| def get_module_flops(module): | ||
| if not hasattr(module, "__flops__"): | ||
| module.__flops__ = 0 | ||
|
|
||
| flops = module.__flops__ | ||
| # iterate over immediate children modules | ||
| for child in module.children(): | ||
| flops += get_module_flops(child) | ||
| return flops | ||
|
|
||
| def get_module_duration(module): | ||
| if not hasattr(module, "__duration__"): | ||
| module.__duration__ = 0 | ||
|
|
||
| duration = module.__duration__ | ||
| if duration == 0: # e.g. ModuleList | ||
| for m in module.children(): | ||
| duration += get_module_duration(m) | ||
| return duration | ||
|
|
||
| def flops_repr(module): | ||
| flops = get_module_flops(module) | ||
| duration = get_module_duration(module) * 1000 | ||
| items = [ | ||
| "{:,} flops".format(flops), | ||
| "{:.3f} ms".format(duration), | ||
| ] | ||
| original_extra_repr = module.original_extra_repr() | ||
| if original_extra_repr: | ||
| items.append(original_extra_repr) | ||
| return ", ".join(items) | ||
|
|
||
| def add_extra_repr(module): | ||
| flops_extra_repr = flops_repr.__get__(module) | ||
| if module.extra_repr != flops_extra_repr: | ||
| module.original_extra_repr = module.extra_repr | ||
| module.extra_repr = flops_extra_repr | ||
| assert module.extra_repr != module.original_extra_repr | ||
|
|
||
| def del_extra_repr(module): | ||
| if hasattr(module, "original_extra_repr"): | ||
| module.extra_repr = module.original_extra_repr | ||
| del module.original_extra_repr | ||
|
|
||
| model.apply(add_extra_repr) | ||
| print(model) | ||
| model.apply(del_extra_repr) | ||
|
|
||
| def calculate_module_flops(module, *args, result=None, **kwargs): | ||
| module_type = module.__class__.__name__ | ||
| module_original_fwd = module._original_forward.__name__ | ||
|
|
||
| if module_type == 'RMSNorm': | ||
| x = args[0] | ||
| return x.numel() * 4 | ||
|
|
||
| elif module_type == 'RMS_norm': | ||
| x = args[0] | ||
| return x.numel() * 4 | ||
|
|
||
| elif module_type == 'Dropout': | ||
| x = args[0] | ||
| return x.numel() * 2 | ||
|
|
||
| elif module_type == 'LayerNorm': | ||
| x = args[0] | ||
| has_affine = module.weight is not None | ||
| return x.numel() * (5 if has_affine else 4) | ||
|
|
||
| elif module_type == 'Linear': | ||
| x = args[0] | ||
| return x.numel() * module.weight.size(0) * 2 | ||
|
|
||
| elif module_type == 'ReLU': | ||
| x = args[0] | ||
| return x.numel() | ||
|
|
||
| elif module_type == 'GELU': | ||
| x = args[0] | ||
| return x.numel() | ||
|
|
||
| elif module_type == 'SiLU': | ||
| x = args[0] | ||
| return x.numel() | ||
|
|
||
| elif module_type == 'Conv3d' or module_type == 'CausalConv3d' or module_type == 'Conv2d': | ||
| x_shape = args[0].shape | ||
| weight = getattr(module, 'weight', None) | ||
| w_shape = weight.shape | ||
| out_shape = result.shape | ||
|
|
||
| flops = conv_flop_count( | ||
| x_shape=x_shape, | ||
| w_shape=w_shape, | ||
| out_shape=out_shape, | ||
| transposed=False | ||
| ) | ||
| return flops | ||
|
|
||
| # AttentionModule input is 3D shape, USP input is 4D shape. | ||
| # | ||
| # 3D shape: | ||
| # q [batch, target_seq_len, Dim] | ||
| # k [batch, source_seq_len, Dim] | ||
| # v [batch, source_seq_len, Dim] | ||
| # flops = (batch * target_seq_len * source_seq_len) * Dim * 2 | ||
| # + (batch * target_seq_len * Dim) * source_seq_len * 2 | ||
| # = 4 * (batch * target_seq_len * source_seq_len * Dim) | ||
| # | ||
| # 4D shape: | ||
| # q [batch, target_seq_len, head, dim] | ||
| # k [batch, source_seq_len, head, dim] | ||
| # v [batch, source_seq_len, head, dim] | ||
| # flops = 4 * (batch * target_seq_len * source_seq_len * head * dim) | ||
| # | ||
| elif module_type == 'AttentionModule': | ||
| q = args[0] | ||
| k = args[1] | ||
| v = args[2] | ||
|
|
||
| b, ts, dq = q.shape | ||
| _, ss, _ = k.shape | ||
| _, _, dv = v.shape | ||
| flops = (b * ts * ss * dq) * 2 + (b * ts * ss * dv) * 2 | ||
| return flops | ||
|
|
||
| elif module_original_fwd == 'usp_attn_forward' or module_type == 'T5Attention': | ||
| q_shape = module.q_shape | ||
| k_shape = module.k_shape | ||
| v_shape = module.v_shape | ||
|
|
||
| b, ts, n, dq = q_shape | ||
| _, ss, _, _ = k_shape | ||
| _, _, _, dv = v_shape | ||
| flops = (b * ts * ss * n * dq) * 2 + (b * ts * ss * n * dv) * 2 | ||
| return flops | ||
|
|
||
| elif module_type == 'GateModule': | ||
| x = args[0] | ||
| return x.numel() * 2 | ||
|
|
||
| elif module_type == 'T5LayerNorm': | ||
| x = args[0] | ||
| return x.numel() * 4 | ||
|
|
||
| # The 10x factor is an estimate of the computational coefficient for torch.log. | ||
| # The search and move operations in position encoding do not involve flop operations. | ||
| elif module_type == 'T5RelativeEmbedding': | ||
| lq = args[0] | ||
| lk = args[1] | ||
| return lq * lk * 10 | ||
|
|
||
| else: | ||
| return 0 | ||
|
|
||
| def flops_counter(): | ||
| def decorator(forward_func): | ||
| @wraps(forward_func) | ||
| def wrapper(self, *args, **kwargs): | ||
| start_time = time.perf_counter() | ||
|
|
||
| result = forward_func(self, *args, **kwargs) | ||
|
|
||
| self.__flops__ = calculate_module_flops(self, *args, result=result, **kwargs) | ||
|
|
||
| end_time = time.perf_counter() | ||
| self.__duration__ = (end_time - start_time) | ||
|
|
||
| return result | ||
| return wrapper | ||
| return decorator | ||
|
|
||
| def wrap_existing_module(module): | ||
| # save original fwd | ||
| module._original_forward = module.forward | ||
|
|
||
| @flops_counter() | ||
| def profiled_forward(self, *args, **kwargs): | ||
| return module._original_forward(*args, **kwargs) | ||
|
|
||
| module.forward = profiled_forward.__get__(module, type(module)) | ||
| return module | ||
|
|
||
| def profile_entire_model(model): | ||
| for name, module in model.named_modules(): | ||
| wrap_existing_module(module) | ||
| return model | ||
|
|
||
| def unwrap_existing_module(module): | ||
| if hasattr(module, "_original_forward"): | ||
| module.forward = module._original_forward | ||
| del module._original_forward | ||
|
|
||
| return module | ||
|
|
||
| def unprofile_entire_model(model): | ||
| for name, module in model.named_modules(): | ||
| unwrap_existing_module(module) | ||
| return model | ||
|
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.