Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 9 additions & 21 deletions src/transformers/models/timesfm/modeling_timesfm.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,11 +339,7 @@ def _forward_transform(
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
"""Input is of shape [B, N, P]."""
mu, sigma = self._timesfm_masked_mean_std(inputs, patched_pads)
sigma = torch.where(
sigma < self.config.tolerance,
torch.tensor(1.0, dtype=sigma.dtype, device=sigma.device),
sigma,
)
sigma = torch.clamp(sigma, min=self.config.tolerance)

# Normalize each patch
outputs = (inputs - mu[:, None, None]) / sigma[:, None, None]
Expand Down Expand Up @@ -522,24 +518,16 @@ def _get_patch_index(arr: torch.Tensor):

# Calculate the number of valid elements
num_valid_elements = torch.sum(mask, dim=1)
num_valid_elements = torch.where(
num_valid_elements == 0,
torch.tensor(1, dtype=num_valid_elements.dtype, device=num_valid_elements.device),
num_valid_elements,
)
num_valid_elements = torch.clamp(num_valid_elements, min=1.0)

# Calculate the masked sum and squared sum
# Calculate the masked sum and mean
masked_sum = torch.sum(arr * mask, dim=1)
masked_squared_sum = torch.sum((arr * mask) ** 2, dim=1)

# Calculate the masked mean and standard deviation
masked_mean = masked_sum / num_valid_elements
masked_var = masked_squared_sum / num_valid_elements - masked_mean**2
masked_var = torch.where(
masked_var < 0.0,
torch.tensor(0.0, dtype=masked_var.dtype, device=masked_var.device),
masked_var,
)
masked_mean = masked_sum / num_valid_elements # [b]

# Calculate the masked variance using centered values
masked_centered_arr = (arr - masked_mean.unsqueeze(-1)) * mask
masked_var = torch.sum(masked_centered_arr**2, dim=1) / num_valid_elements
masked_var = torch.clamp(masked_var, min=0.0)
masked_std = torch.sqrt(masked_var)

return masked_mean, masked_std
Expand Down
30 changes: 9 additions & 21 deletions src/transformers/models/timesfm/modular_timesfm.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,11 +295,7 @@ def _forward_transform(
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
"""Input is of shape [B, N, P]."""
mu, sigma = self._timesfm_masked_mean_std(inputs, patched_pads)
sigma = torch.where(
sigma < self.config.tolerance,
torch.tensor(1.0, dtype=sigma.dtype, device=sigma.device),
sigma,
)
sigma = torch.clamp(sigma, min=self.config.tolerance)

# Normalize each patch
outputs = (inputs - mu[:, None, None]) / sigma[:, None, None]
Expand Down Expand Up @@ -478,24 +474,16 @@ def _get_patch_index(arr: torch.Tensor):

# Calculate the number of valid elements
num_valid_elements = torch.sum(mask, dim=1)
num_valid_elements = torch.where(
num_valid_elements == 0,
torch.tensor(1, dtype=num_valid_elements.dtype, device=num_valid_elements.device),
num_valid_elements,
)
num_valid_elements = torch.clamp(num_valid_elements, min=1.0)

# Calculate the masked sum and squared sum
# Calculate the masked sum and mean
masked_sum = torch.sum(arr * mask, dim=1)
masked_squared_sum = torch.sum((arr * mask) ** 2, dim=1)

# Calculate the masked mean and standard deviation
masked_mean = masked_sum / num_valid_elements
masked_var = masked_squared_sum / num_valid_elements - masked_mean**2
masked_var = torch.where(
masked_var < 0.0,
torch.tensor(0.0, dtype=masked_var.dtype, device=masked_var.device),
masked_var,
)
masked_mean = masked_sum / num_valid_elements # [b]

# Calculate the masked variance using centered values
masked_centered_arr = (arr - masked_mean.unsqueeze(-1)) * mask
masked_var = torch.sum(masked_centered_arr**2, dim=1) / num_valid_elements
masked_var = torch.clamp(masked_var, min=0.0)
masked_std = torch.sqrt(masked_var)

return masked_mean, masked_std
Expand Down
Loading