This repository contains the official implementation of the NeurIPS 2025 paper: "ALINE: Joint Amortization for Bayesian Inference and Active Data Acquisition".
-
Clone the repository:
git clone https://github.com/huangdaolang/ALINE.git cd ALINE -
Create a conda environment and install dependencies:
conda create -n aline python=3.12 conda activate aline pip install -r requirements.txt
config: hydra configurationdistributions: customised distribution classesloss: loss functionsmodel: ALINE architecturetasks: simulating task datautils: helper functionsnotebooks: Jupyter notebooks for evaluation and analysis
1D
python train_aline.py task=al_mix max_epoch=200000 burning_epoch=20000 task.dim_x=1 task.n_target_theta=2 task.n_query_init=200 task.lengthscale_lower=0.1 task.lengthscale_upper=2.0 task.design_scale=5 gamma=1 file_name='aline_al_1d.pth' checkpoint_name='ckpt_al_1d.tar' min_T=30 T=302D
python train_aline.py task=al_mix max_epoch=200000 burning_epoch=20000 task.dim_x=2 task.n_target_theta=3 task.n_query_init=200 task.lengthscale_lower=0.1 task.lengthscale_upper=2.0 task.design_scale=5 gamma=1 file_name='aline_al_2d.pth' checkpoint_name='ckpt_al_2d.tar' min_T=50 T=50python train_aline.py task=location_finding task.theta_dist=uniform task.n_target_theta=2 task.K=1 lr=1e-3 T=30 task.n_query_init=200 max_epoch=100000 burning_epoch=20000 eval=bed eval.batch_size=1000 eval.L_final=1000000 eval.batch_size_final=200 eval.n_query_final=2000 eval.T_final=35python train_aline.py task=ces lr=1e-3 T=10 task.n_query_init=100 max_epoch=200000 burning_epoch=20000 eval=bed eval.batch_size=500 eval.T_final=20 eval.L_final=10000000 eval.batch_size_final=20 eval.n_query_final=2000 eval.T_final=15python train_aline.py task=psychometric task.mask_type=["predefined"] min_T=30 T=30 gamma=0.99 max_epoch=100000 burning_epoch=10000 checkpoint_name='ckpt_psychometric.tar' file_name='aline_psychometric.pth'If you find this work useful in your research, please consider citing our paper:
@inproceedings{huang2025aline,
title={ALINE: Joint Amortization for Bayesian Inference and Active Data Acquisition},
author={Huang, Daolang and Wen, Xinyi and Bharti, Ayush and Kaski, Samuel and Acerbi, Luigi},
booktitle={Thirty-ninth Conference on Neural Information Processing Systems},
year={2025}
}
This project is licensed under the MIT License.