Strapping is a library containing a fast implementation of bootstrapping sampling algorithm. Along the sampling algorithms you will find a set of helper functions used to compute basic statistics useful in bootstrapping-based analysis.
Library supports:
- single variable sampling
- multi-column variable sampling
- A/B test difference sampling
Strapping can be installed via pip from PyPI.
pip install strappingTu run tests for the package use tox:
toxIn this example we will use a bootstrapping algorithm to sample a distribution of mean and std. deviation of the given dataset.
Import bootstrap and stats module.
bootstrapcontains bootstrapping algorithms,statscontains helpers for computing basic statistics (e.g. confidence intervals).
from strapping import bootstrap, statsGenerate sample data using normal distribution:
X = np.random.normal(0, 1, size=100).reshape(-1, 1)Sample a vector containing possible means for given dataset:
mu_sampled = bootstrap.sample(X, iterations=1000, aggrfunc=np.mean)
std_sampled = bootstrap.sample(X, iterations=1000, aggrfunc=np.std)We can check output values:
>>> np.mean(mu_sampled), np.mean(std_sampled)
(-0.028259915654785906, 1.0099170040429664)Now we will compute confidence intervals based on sampled values. This works for both single values and multi-column variables. By default, confidence interval will three values: (5th quantile, mean, 95th quantile).
q05, mean, q95 = stats.confidence_intervals(mu_sampled)We can check output values:
>>> q05
array([-0.15844911])
>>> mean
array([-0.01509199])
>>> q95
array([0.12659994])In this example we will test using bootstrapping for data containing multiple columns.
Generate data containing multiple columns:
X = np.array([
np.random.normal(0, 1, size=100),
np.random.normal(10, 5, size=100),
np.random.normal(-20, 5, size=100),
]).TImport bootstrap module:
from strapping import bootstrap Sample mean for given dataset:
mu_sampled = bootstrap.sample(X, iterations=1000, aggrfunc=np.mean)We can check output values:
>>> mu_sampled.mean(axis=0)
array([ -0.06588892, 9.97571153, -19.187514 ])In this example we will test using bootstrapping to sample a difference between two given datasets. Then, we will use sampled values to compute percentage confidence intervals for the difference.
Generate data containing multiple columns:
X1 = np.random.normal(5, 2, size=100).reshape(-1, 1)
X2 = np.random.normal(6, 2, size=100).reshape(-1, 1)Import bootstrap and stats modules:
from strapping import bootstrap, stats Sample mean for given dataset:
mu_sampled = bootstrap.sample_diffs(X1, X2, iterations=1000, aggrfunc=np.mean)We can check output values:
>>> mu_sampled.mean()
-1.2875678613575356Now we will compute both confidence intervals and percentage confidence intervals based on sampled values.
>>> stats.confidence_intervals(mu_sampled)
(array([-1.77019123]), array([-1.28756786]), array([-0.79820009]))Percentage confidence intervals are computed as a percentage difference between sampled values and the mean value of a provided reference (control dataset).
>>> stats.percentage_confidence_intervals(mu_sampled, X1.mean())
(array([-0.36300107]), array([-0.26403278]), array([-0.16368146]))Using strapping you can easily compute bootstrapped value of Cohen's d,
which is often used for a metric of measuring the effect size.
To do so first compute the difference between two datasets:
diff_sampled = bootstrap.sample_diffs(X1, X2, iterations=1000, aggrfunc=np.mean)Then, compute the pooled standard deviation using a helper function and finally compute Cohen's d value:
from strapping.stats import pooled_std
pstd = pooled_std(X1, X2)
cohensd = diff_sampled / pstd