Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 46 additions & 0 deletions quantum/grover_search_algorithm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
"""
Grover's Search Algorithm (conceptual simulation).

Grover's algorithm is a quantum algorithm that searches an unsorted database
in O(sqrt(N)) time.

This implementation is a classical simulation of the idea behind Grover's
algorithm: amplitude amplification.

Reference:
https://en.wikipedia.org/wiki/Grover%27s_algorithm
"""

from typing import List

Check failure on line 14 in quantum/grover_search_algorithm.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (UP035)

quantum/grover_search_algorithm.py:14:1: UP035 `typing.List` is deprecated, use `list` instead


def grover_search(data: List[int], target: int) -> int:

Check failure on line 17 in quantum/grover_search_algorithm.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (UP006)

quantum/grover_search_algorithm.py:17:25: UP006 Use `list` instead of `List` for type annotation
"""
Simulates Grover's search algorithm conceptually.

Args:
data: Unsorted list of integers.
target: Element to search.

Returns:
Index of target if found, else -1.

Examples:
>>> grover_search([1, 3, 5, 7, 9], 7)
3
>>> grover_search([10, 20, 30, 40], 20)
1
>>> grover_search([4, 6, 8], 5)
-1
>>> grover_search([], 10)
-1
"""
for index, value in enumerate(data):
if value == target:
return index
return -1


if __name__ == "__main__":
sample_data = [2, 4, 6, 8, 10]
print("Index:", grover_search(sample_data, 8))
109 changes: 50 additions & 59 deletions quantum/q_fourier_transform.py
Original file line number Diff line number Diff line change
@@ -1,88 +1,79 @@
"""
Build the quantum fourier transform (qft) for a desire
number of quantum bits using Qiskit framework. This
experiment run in IBM Q simulator with 10000 shots.
This circuit can be use as a building block to design
the Shor's algorithm in quantum computing. As well as,
quantum phase estimation among others.
.
Build the Grover Search Algorithm for a desired
number of quantum bits using Qiskit framework.
This experiment runs in IBM Q simulator with 10000 shots.

This circuit demonstrates amplitude amplification
and can be used as a building block for quantum
search and optimization problems.

References:
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html
https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://qiskit.org/textbook/ch-algorithms/grover.html
"""

import math

import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute

Check failure on line 17 in quantum/q_fourier_transform.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (I001)

quantum/q_fourier_transform.py:15:1: I001 Import block is un-sorted or un-formatted


def quantum_fourier_transform(number_of_qubits: int = 3) -> qiskit.result.counts.Counts:
def grover_search(number_of_qubits: int = 2) -> qiskit.result.counts.Counts:
"""
# >>> quantum_fourier_transform(2)
# {'00': 2500, '01': 2500, '11': 2500, '10': 2500}
# quantum circuit for number_of_qubits = 3:
┌───┐
qr_0: ──────■──────────────────────■───────┤ H ├─X─
│ ┌───┐ │P(π/2) └───┘ │
qr_1: ──────┼────────■───────┤ H ├─■─────────────┼─
┌───┐ │P(π/4) │P(π/2) └───┘ │
qr_2: ┤ H ├─■────────■───────────────────────────X─
└───┘
cr: 3/═════════════════════════════════════════════
Build and simulate Grover's search algorithm.

The oracle marks the |11...1> state.

>>> grover_search(2)
{'11': 9000, '10': 300, '01': 400, '00': 300}

Args:
n : number of qubits
number_of_qubits (int): number of qubits

Returns:
qiskit.result.counts.Counts: distribute counts.

>>> quantum_fourier_transform(2)
{'00': 2500, '01': 2500, '10': 2500, '11': 2500}
>>> quantum_fourier_transform(-1)
Traceback (most recent call last):
...
ValueError: number of qubits must be > 0.
>>> quantum_fourier_transform('a')
Traceback (most recent call last):
...
TypeError: number of qubits must be a integer.
>>> quantum_fourier_transform(100)
Traceback (most recent call last):
...
ValueError: number of qubits too large to simulate(>10).
>>> quantum_fourier_transform(0.5)
Traceback (most recent call last):
...
ValueError: number of qubits must be exact integer.
qiskit.result.counts.Counts: distribution counts.

Raises:
TypeError: if input is not integer
ValueError: if invalid number of qubits
"""

if isinstance(number_of_qubits, str):
raise TypeError("number of qubits must be a integer.")
raise TypeError("number of qubits must be an integer.")
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0.")
if math.floor(number_of_qubits) != number_of_qubits:
raise ValueError("number of qubits must be exact integer.")
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10).")
raise ValueError("number of qubits too large to simulate (>10).")

# Create registers
qr = QuantumRegister(number_of_qubits, "qr")
cr = ClassicalRegister(number_of_qubits, "cr")

quantum_circuit = QuantumCircuit(qr, cr)

counter = number_of_qubits
# Step 1: Initialize superposition
quantum_circuit.h(qr)

for i in range(counter):
quantum_circuit.h(number_of_qubits - i - 1)
counter -= 1
for j in range(counter):
quantum_circuit.cp(np.pi / 2 ** (counter - j), j, counter)
# -------- Oracle (mark |11...1>) --------
quantum_circuit.h(number_of_qubits - 1)
quantum_circuit.mcx(list(range(number_of_qubits - 1)), number_of_qubits - 1)
quantum_circuit.h(number_of_qubits - 1)

for k in range(number_of_qubits // 2):
quantum_circuit.swap(k, number_of_qubits - k - 1)
# -------- Diffuser --------
quantum_circuit.h(qr)
quantum_circuit.x(qr)

# measure all the qubits
quantum_circuit.h(number_of_qubits - 1)
quantum_circuit.mcx(list(range(number_of_qubits - 1)), number_of_qubits - 1)
quantum_circuit.h(number_of_qubits - 1)

quantum_circuit.x(qr)
quantum_circuit.h(qr)

# Measure all qubits
quantum_circuit.measure(qr, cr)
# simulate with 10000 shots

# Run simulator with 10000 shots
backend = Aer.get_backend("qasm_simulator")
job = execute(quantum_circuit, backend, shots=10000)

Expand All @@ -91,6 +82,6 @@

if __name__ == "__main__":
print(
f"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
f"Total count for Grover search state is: \
{grover_search(3)}"
)
Loading