Skip to content

AI-Powered UFC Fighting Analysis & Counter-Strategy Platform - Complete system with Supabase backend, fighter profiles, matchup simulator, and video analysis

License

Notifications You must be signed in to change notification settings

IndustriesAI/virtual-fight-lab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ₯Š Virtual Fight Lab

The Ultimate AI-Powered UFC Fighting Analysis & Counter-Strategy Platform

License: MIT Python 3.11+ Supabase


🎯 Overview

Virtual Fight Lab is a revolutionary AI-powered platform designed to provide fighters, coaches, and MMA enthusiasts with elite-level fight analysis, counter-strategies, and personalized training feedback. This system combines cutting-edge artificial intelligence with world-class coaching methodologies to democratize access to professional-grade fight preparation tools.

🌟 Key Features

  • πŸ₯‹ Fighting Style Database - Comprehensive analysis of 9 major MMA fighting styles
  • 🎯 Counter-Strategy Engine - Detailed blueprints for defeating any fighting style
  • πŸ‘€ Elite Fighter Profiles - In-depth scouting reports on 12+ top UFC fighters
  • βš”οΈ Interactive Matchup Simulator - AI-powered fight outcome predictions
  • πŸ“Ή AI Video Analysis - Upload fight footage for technical feedback
  • πŸ“Š Combat Domains Framework - Professional rating system across 8 domains
  • πŸ’° Monetization Ready - Complete subscription and gym partnership model

πŸ“‹ Table of Contents


✨ Features

1. Fighting Style Database

Browse and study comprehensive AI-generated analyses of all major MMA fighting styles:

  • Boxing
  • Kickboxing
  • Muay Thai
  • Sanda (Sanshou)
  • Brazilian Jiu-Jitsu (BJJ)
  • Wrestling
  • Judo
  • Karate
  • Taekwondo

Each style includes:

  • Core characteristics and techniques
  • Primary strengths
  • Critical weaknesses
  • Tactical vulnerabilities
  • Physical requirements

2. Counter-Strategy Engine

Select an opponent's fighting style and receive a complete game plan including:

  • Pre-fight preparation checklist
  • Striking defense and counters
  • Grappling defense and counters
  • Offensive strategies
  • Range and position control
  • Round-by-round strategy
  • Training camp recommendations

3. Elite Fighter Scouting Database

Access detailed profiles of top UFC fighters with ratings across all combat domains:

  • Israel Adesanya
  • Alex Pereira
  • Conor McGregor
  • Max Holloway
  • Khabib Nurmagomedov
  • Islam Makhachev
  • Khamzat Chimaev
  • Jon Jones
  • Charles Oliveira
  • And more...

4. Interactive Matchup Simulator

The game-changing feature that lets you:

  • Pit any two fighters or styles against each other
  • Get AI-predicted outcomes with win probabilities
  • Analyze problems and advantages for each fighter
  • Identify critical pain points
  • Receive style adaptation recommendations

5. AI Video Analysis

Upload sparring or fight footage and receive:

  • Technical breakdown of positives and negatives
  • Specific corrections needed
  • Recommended drills
  • Personalized improvement plan
  • Performance ratings

6. Combat Domains Categorization

Professional framework rating fighters across:

  • Striking: Boxing, Kickboxing, Muay Thai, Karate/TKD
  • Grappling: Wrestling, BJJ, Judo
  • Clinch Work: Offensive and defensive
  • Cage Craft: Positioning and control
  • Transitions: Between positions and ranges
  • Fight IQ: Strategic decision-making
  • Physical Attributes: Speed, power, cardio
  • Mental Game: Composure and resilience

πŸ›  Tech Stack

Backend

  • Python 3.11+ - Core application logic
  • Supabase - Database, authentication, and storage
  • PostgreSQL - Relational database
  • OpenAI API - AI-powered analysis generation

AI & Machine Learning

  • GPT-4 / Gemini 2.5 Flash - Natural language generation
  • Computer Vision (planned) - Video analysis
  • Pattern Recognition - Fighter tendency analysis

Infrastructure

  • Row Level Security (RLS) - Data protection
  • Real-time Subscriptions - Live updates
  • CDN Storage - Video and image delivery
  • RESTful API - Client integrations

πŸ“¦ Installation

Prerequisites

  • Python 3.11 or higher
  • Supabase account (sign up here)
  • OpenAI API key or compatible endpoint

1. Clone the Repository

git clone https://github.com/YOUR_USERNAME/virtual-fight-lab.git
cd virtual-fight-lab

2. Install Dependencies

pip install -r requirements.txt

3. Set Up Environment Variables

Create a .env file in the root directory:

SUPABASE_URL=your_supabase_project_url
SUPABASE_KEY=your_supabase_anon_key
OPENAI_API_KEY=your_openai_api_key

4. Deploy Database Schema

  1. Open your Supabase project dashboard
  2. Go to SQL Editor
  3. Copy the contents of database/supabase_schema.sql
  4. Run the SQL script

5. Seed the Database

python scripts/seed_supabase_data.py

πŸš€ Quick Start

Running the Backend API

from backend.virtual_fight_lab_app import *

# Initialize managers
user_manager = UserManager()
fighter_manager = FighterManager()
matchup_simulator = MatchupSimulator()

# Get all fighters
fighters = fighter_manager.get_all_fighters()
print(f"Found {len(fighters)} fighters")

# Run a matchup simulation
matchup = matchup_simulator.generate_matchup_analysis(
    fighter_a_id="uuid-here",
    fighter_b_id="uuid-here",
    user_id="user-uuid"
)
print(matchup)

Analyzing a Fighting Style

from backend.virtual_fight_lab_app import FightingStyleManager

# Get boxing analysis
boxing = FightingStyleManager.get_style_by_name("Boxing")
print(boxing['ai_analysis_full'])

# Get counter-strategy
counter = FightingStyleManager.get_counter_strategy(boxing['id'])
print(counter['ai_strategy_full'])

Video Upload and Analysis

from backend.virtual_fight_lab_app import VideoAnalyzer

# Upload video
video = VideoAnalyzer.upload_video(
    user_id="user-uuid",
    file_path="sparring_session.mp4",
    title="Training Session",
    description="Working on striking defense"
)

# Analyze video
analysis = VideoAnalyzer.analyze_video(
    video_id=video['id'],
    analysis_focus="striking"
)
print(analysis)

πŸ“ Project Structure

virtual-fight-lab/
β”œβ”€β”€ backend/
β”‚   └── virtual_fight_lab_app.py      # Main backend API
β”œβ”€β”€ database/
β”‚   └── supabase_schema.sql           # Complete database schema
β”œβ”€β”€ scripts/
β”‚   β”œβ”€β”€ seed_supabase_data.py         # Database seeding
β”‚   β”œβ”€β”€ analyze_fighting_styles_v2.py # Style analysis generator
β”‚   β”œβ”€β”€ generate_counter_strategies.py # Counter-strategy generator
β”‚   β”œβ”€β”€ generate_elite_fighter_profiles.py # Fighter profile generator
β”‚   β”œβ”€β”€ virtual_fight_lab_simulator.py # Matchup simulator
β”‚   └── virtual_fight_lab_video_analysis.py # Video analysis module
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ analysis_*.txt                # Fighting style analyses
β”‚   β”œβ”€β”€ counter_*.txt                 # Counter-strategies
β”‚   β”œβ”€β”€ fighter_*.txt                 # Fighter profiles
β”‚   └── matchup_*.txt                 # Example matchups
β”œβ”€β”€ docs/
β”‚   β”œβ”€β”€ SUPABASE_IMPLEMENTATION_GUIDE.md
β”‚   β”œβ”€β”€ VIRTUAL_FIGHT_LAB_README.md
β”‚   β”œβ”€β”€ combat_domains_framework.md
β”‚   β”œβ”€β”€ virtual_fight_lab_video_analysis_framework.md
β”‚   └── virtual_fight_lab_master_plan.md
β”œβ”€β”€ .gitignore
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ LICENSE
└── README.md

πŸ“š Documentation

Comprehensive documentation is available in the docs/ directory:


πŸ”Œ API Usage

User Management

from backend.virtual_fight_lab_app import UserManager

# Create user profile
user = UserManager.create_user_profile(
    user_id="uuid",
    email="fighter@example.com",
    full_name="John Fighter",
    user_type="fighter"
)

# Update subscription
UserManager.update_subscription("user-uuid", "fighter_pro")

Fighter Database

from backend.virtual_fight_lab_app import FighterManager

# Get fighter with full details
fighter = FighterManager.get_fighter_by_id("fighter-uuid")
print(fighter['fighter'])
print(fighter['ratings'])
print(fighter['techniques'])
print(fighter['weaknesses'])

Matchup Simulation

from backend.virtual_fight_lab_app import MatchupSimulator

# Generate matchup analysis
matchup = MatchupSimulator.generate_matchup_analysis(
    fighter_a_id="uuid-1",
    fighter_b_id="uuid-2",
    user_id="user-uuid"
)

# Get user's matchup history
history = MatchupSimulator.get_user_matchups("user-uuid")

πŸ—„ Database Schema

The platform uses 16 interconnected tables:

Core Tables

  • user_profiles - User accounts and subscriptions
  • gyms - Gym partnerships
  • fighting_styles - Style database
  • counter_strategies - Counter-strategy guides
  • fighters - Fighter profiles
  • fighter_combat_ratings - Combat domain ratings
  • fighter_techniques - Signature moves
  • fighter_weaknesses - Known vulnerabilities

Feature Tables

  • matchup_simulations - Matchup analyses
  • video_uploads - Uploaded videos
  • video_analyses - AI analysis results
  • video_timestamps - Timestamped feedback

System Tables

  • user_activity_log - Activity tracking
  • user_favorites - Saved items
  • subscriptions - Billing management
  • usage_limits - Tier-based limits

πŸ’° Monetization

Subscription Tiers

Tier Price Features
Free $0/month Basic style database, 2 video analyses/month
Fighter Pro $29/month Full access, 10 video analyses/month
Coach Elite $99/month Unlimited analyses, team management, API access
Gym Partnership Custom White-label, unlimited access for all members

Revenue Streams

  1. Monthly Subscriptions - Recurring revenue from individual users
  2. Gym Partnerships - B2B white-label solutions
  3. Sponsorships - Fight gear, nutrition brands
  4. Premium Content - Exclusive fighter breakdowns

🀝 Contributing

We welcome contributions! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Development Guidelines

  • Follow PEP 8 style guide for Python code
  • Add docstrings to all functions
  • Include unit tests for new features
  • Update documentation as needed

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ™ Acknowledgments

  • Built with AI by Manus AI
  • Inspired by the MMA community
  • Powered by Supabase and OpenAI

πŸ“ž Contact & Support


🎯 Roadmap

Phase 1: MVP (Q1 2025)

  • Core database schema
  • Fighting style database
  • Counter-strategy engine
  • Fighter profiles
  • Matchup simulator
  • Web application frontend
  • User authentication

Phase 2: Enhancement (Q2 2025)

  • Mobile app (iOS/Android)
  • Real-time video analysis
  • Computer vision integration
  • Payment processing
  • Gym partnership portal

Phase 3: Scale (Q3-Q4 2025)

  • Expand fighter database to 100+ fighters
  • AR training overlays
  • Live sparring analysis
  • API marketplace
  • International expansion

Train Smarter. Fight Harder. Win More. πŸ₯Š


Virtual Fight Lab - Revolutionizing MMA Training Through AI

About

AI-Powered UFC Fighting Analysis & Counter-Strategy Platform - Complete system with Supabase backend, fighter profiles, matchup simulator, and video analysis

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published