DiffPlace - A Conditional Diffusion Framework for Simultaneous VLSI Placement Beyond Sequential Paradigms
The placement results on ISPD2005 benchmarks
| Adaptec1 | Adaptec2 | Adaptec3 | Adaptec4 |
|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
| Bigblue1 | Bigblue2 | Bigblue3 | Bigblue4 |
|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
diffplace/
├── train.py # Training script
├── scripts/
│ └── deploy.py # Inference
├── engine/
│ ├── diffplace.py # Main model (DiffPlace)
│ ├── models.py # Legacy models
│ ├── utils.py
│ ├── diffusion/ # Diffusion components
│ ├── training/ # Training utilities
│ ├── networks/ # Neural networks
│ ├── datasets/ # Data loading
│ └── conf/ # Configs
└── data/
└── ispd2005/ # Benchmarks (see README inside)
python train.py --config engine/conf/pretrain.yaml --data_dir path/to/synthetic/data
python train.py --config engine/conf/finetune.yaml --dataset_type ispd --data_dir data/ispd2005python scripts/deploy.py \
--checkpoint path/to/checkpoint.pt \
--benchmarks adaptec1 --visualizepip install -r requirements.txt






