Skip to content

Harbinzzy/UDPNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🔥 UDPNet: Unleashing Depth-based Priors for Robust Image Dehazing

This repository contains the official implementation of the following paper:

UDPNet: Unleashing Depth-based Priors for Robust Image Dehazing
Zengyuan Zuo, Junjun Jiang*, Gang Wu, Xianming Liu

AIIA Lab, Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China.

Paper Link: [official link]

Overview

overall_structure

Image dehazing has witnessed significant advancements with the development of deep learning models. However, a few methods predominantly focus on single-modal RGB features, neglecting the inherent correlation between scene depth and haze distribution. Even those that jointly optimize depth estimation and image dehazing often suffer from suboptimal performance due to inadequate utilization of accurate depth information. In this paper, we present UDPNet, a general framework that leverages depth-based priors from large-scale pretrained depth estimation model DepthAnything V2 to boost existing image dehazing models. Specifically, our architecture comprises two typical components: the Depth-Guided Attention Module (DGAM) adaptively modulates features via lightweight depth-guided channel attention, and the Depth Prior Fusion Module (DPFM) enables hierarchical fusion of multi-scale depth map features by dual sliding-window multi-head cross-attention mechanism. These modules ensure both computational efficiency and effective integration of depth priors. Moreover, the intrinsic robustness of depth priors empowers the network to dynamically adapt to varying haze densities, illumination conditions, and domain gaps across synthetic and real-world data. Extensive experimental results demonstrate the effectiveness of our UDPNet, outperforming the state-of-the-art methods on popular dehazing datasets, such as 0.85 dB PSNR improvement on the SOTS dataset, 1.19 dB on the Haze4K dataset and 1.79 dB PSNR on the NHR dataset.

⭐ If UDPNet is helpful to your projects, please help star this repo. Thank you! 👈

Installation

The project is built with PyTorch 3.8, PyTorch 1.8.1. CUDA 10.2, cuDNN 7.6.5 For installing, follow these instructions:

conda install pytorch=1.8.1 torchvision=0.9.1 -c pytorch
pip install tensorboard einops scikit-image pytorch_msssim opencv-python
conda install pillow

Please use the pillow package downloaded by Conda instead of pip.

Install warmup scheduler:

cd pytorch-gradual-warmup-lr/
python setup.py install
cd ..

Pretrained models

Download Links: Baidu Netdisk password: 2026

Results

📊 Synthetic Benchmarks

Table 1. SOTS-Indoor & SOTS-Outdoor
Method Venue Indoor PSNR Indoor SSIM Outdoor PSNR Outdoor SSIM
DCP TPAMI'10 16.61 0.855 19.14 0.861
FFA-Net AAAI'20 36.39 0.989 33.57 0.984
AECR-Net CVPR'21 37.17 0.990 - -
DeHamer CVPR'22 36.63 0.988 35.18 0.986
DehazeFormer-L TIP'23 40.05 0.996 - -
FSNet (Baseline) TPAMI'23 42.45 0.997 40.40 0.997
MB-TaylorFormer-L ICCV'23 42.64 0.994 38.09 0.991
FocalNet ICCV'23 40.82 0.996 37.71 0.995
C²PNet CVPR'23 42.56 0.995 36.68 0.990
DEA-Net-CR TIP'24 41.31 0.995 36.59 0.990
DCMPNet CVPR'24 42.18 0.997 36.56 0.993
GridFormer IJCV'24 42.34 0.994 - -
ConvIR-B (Baseline) TPAMI'24 42.72 0.997 39.42 0.996
SFMN TIP'25 41.44 0.995 37.72 0.991
PoolNet-B TIP'25 42.01 0.997 - -
PGH²Net AAAI'25 41.70 0.996 37.52 0.989
MB-TaylorFormerV2-L TPAMI'25 42.84 0.995 39.25 0.992
ConvIR + UDP (Ours) 43.12 0.997 40.32 0.996
FSNet + UDP (Ours) 43.30 0.997 40.53 0.997
Table 2. Haze4K
Method PSNR SSIM
DehazeNet 19.12 0.84
GridDehazeNet 23.29 0.93
FFA-Net 26.96 0.95
DMT-Net 28.53 0.96
PMNet 33.49 0.98
MB-TaylorFormer-L 34.47 0.99
FSNet (Baseline) 34.12 0.99
GridFormer 33.27 0.99
ConvIR-B (Baseline) 34.15 0.99
DEA-Net-CR 34.25 0.99
MB-TaylorFormerV2-B 34.92 0.99
ConvIR + UDP (Ours) 34.82 0.99
FSNet + UDP (Ours) 35.31 0.99

🌙 Nighttime Dehazing

Table 3. GTA5
Method PSNR SSIM
GS 21.02 0.639
MRP 20.92 0.646
Ancuti et al. 20.59 0.623
Yan et al. 27.00 0.850
CycleGAN 21.75 0.696
Jin et al. 30.38 0.904
ConvIR-B (Baseline) 31.83 0.921
PoolNet-B (Baseline) 31.53 0.921
PoolNet + UDP 32.78 0.930
ConvIR + UDP 33.12 0.933
Table 4. NHR
Method PSNR SSIM
NDIM 14.31 0.526
GS 17.32 0.629
MRPF 16.95 0.667
MRP 19.93 0.777
OSFD 21.32 0.804
HCD 23.43 0.953
FocalNet 25.35 0.969
Jin et al. 26.56 0.890
FSNet (Baseline) 26.30 0.976
ConvIR-B (Baseline) 29.49 0.983
PoolNet-B 28.28 0.980
FSNet + UDP 28.09 0.980
ConvIR + UDP 29.54 0.983

🏞️Real-World Image Dehazing

Table 5. Dense-Haze & NH-HAZE
Method Dense PSNR Dense SSIM Dense LPIPS NH PSNR NH SSIM NH LPIPS
DehazeNet 13.84 0.43 - 16.62 0.52 -
MSBDN 15.37 0.49 - 19.23 0.71 -
DeHamer 16.62 0.56 0.6346 20.66 0.68 0.3837
PMNet 16.79 0.51 - 20.42 0.73 -
MB-TaylorFormer-B 16.66 0.56 0.6125 - - -
C²PNet 16.88 0.57 - 20.24 0.69 -
FocalNet 17.07 0.63 0.6087 20.43 0.79 0.3780
SFNet 17.46 0.58 0.5689 20.46 0.80 -
FSNet (Baseline) 17.13 0.65 0.5756 20.55 0.81 0.3624
ConvIR-S (Baseline) 17.45 0.65 0.6000 20.65 0.80 0.3669
ConvIR + UDP 17.55 0.67 0.5813 20.98 0.82 0.3567
FSNet + UDP 17.85 0.65 0.6033 20.94 0.82 0.3732

🌍Remote Sensing Image Dehazing

Table 6. Remote Sensing Dehazing
Method Thin PSNR Thin SSIM Moderate PSNR Moderate SSIM Thick PSNR Thick SSIM
AOD-Net 19.54 0.854 20.10 0.885 15.92 0.731
H2RL-Net 20.91 0.880 22.34 0.906 17.41 0.768
FCFT-Net 23.59 0.913 22.88 0.927 20.03 0.816
C²PNet 19.62 0.880 24.79 0.940 16.83 0.790
Restormer 23.08 0.912 24.73 0.933 18.58 0.762
Trinity-Net 21.55 0.884 23.35 0.895 20.97 0.823
UMWTransformer 24.29 0.919 26.65 0.946 20.07 0.825
FocalNet 24.16 0.916 25.99 0.947 21.69 0.847
ConvIR-S (Baseline) 25.11 0.978 26.79 0.978 22.65 0.950
PoolNet-S (Baseline) 25.02 0.979 27.02 0.979 22.73 0.955
ConvIR + UDP 25.48 0.979 28.07 0.981 22.95 0.953
PoolNet + UDP 26.20 0.980 28.26 0.979 23.13 0.951

🧪 All-in-One Image Restoration Benchmarks

Table 7. Performance on Five Challenging Benchmarks
Method Dehaze Derain Denoise Deblur Low-Light Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
DehazeFormer (TIP’23) 25.31 0.937 33.68 0.954 30.89 0.880 25.93 0.785 21.31 0.819 27.42 0.875
Retinexformer (ICCV’23) 24.81 0.933 32.68 0.940 30.84 0.880 25.09 0.779 22.76 0.863 27.24 0.873
SwinIR (ICCVW’21) 21.50 0.891 30.78 0.923 30.59 0.868 24.52 0.773 17.81 0.723 25.04 0.835
Restormer (CVPR’22) 24.09 0.927 34.81 0.960 31.49 0.884 27.22 0.829 20.41 0.806 27.60 0.881
FSNet (TPAMI’23) 25.53 0.943 36.07 0.968 31.33 0.883 28.32 0.869 22.29 0.829 28.71 0.898
TransWeather (CVPR’22) 21.32 0.885 29.43 0.905 29.00 0.841 25.12 0.757 21.21 0.792 25.22 0.836
AirNet (CVPR’22) 21.04 0.884 32.98 0.951 30.91 0.882 24.35 0.781 18.18 0.735 25.49 0.846
PromptIR (Baseline) 26.54 0.949 36.37 0.970 31.47 0.886 28.71 0.881 22.68 0.832 29.15 0.904
AdaIR (Baseline) 30.53 0.978 38.02 0.981 31.35 0.889 28.12 0.858 23.00 0.845 30.20 0.910
DCPT-PromptIR 30.72 0.977 37.32 0.978 31.32 0.885 28.84 0.877 23.35 0.840 30.31 0.911
DA-RCOT 30.96 0.975 37.87 0.980 31.23 0.888 28.68 0.872 23.25 0.836 30.40 0.911
Perceive-IR 28.19 0.964 37.25 0.977 31.44 0.887 29.46 0.886 22.88 0.833 29.84 0.909
Pool-AIO 30.25 0.977 37.85 0.981 31.24 0.887 27.66 0.844 22.66 0.841 29.93 0.906
DPPD-PromptIR 30.31 0.980 37.32 0.980 31.33 0.885 28.74 0.875 22.73 0.846 30.09 0.913
VLU-Net 30.84 0.980 38.54 0.982 31.43 0.891 27.46 0.840 22.29 0.833 30.11 0.905
PromptIR + UDP (Ours) 31.33 0.980 37.63 0.980 31.25 0.883 28.34 0.868 23.18 0.851 30.35 0.912
AdaIR + UDP (Ours) 31.41 0.980 37.85 0.980 31.28 0.888 28.62 0.870 23.53 0.854 30.55 0.915

Citation

If you find our repo useful for your research, please consider citing our paper:

@article{zuo2026udpnet,
  title={{UDPNet}: Unleashing Depth-based Priors for Robust Image Dehazing},
  author={Zuo, Zengyuan and Jiang, Junjun and Wu, Gang and Liu, Xianming},
  journal={arXiv preprint arXiv:2601.06909},
  year={2026}
}

Acknowledgments

This code is based on FSNet, ConvIR, PoolNet and AdaIR.

Contact

📮📮📮 Should you have any problem, please contact Zengyuan Zuo3565741165@qq.com. We will response to your request as soon as possible!

About

[arXiv 2026] UDPNet: Unleashing Depth-based Priors for Robust Image Dehazing

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published