Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
182 changes: 182 additions & 0 deletions content/en/agentic_onboarding/setup.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
---
title: Agentic Onboarding Setup
description: Instrument your frontend applications with one prompt using LLM coding agents like Cursor or Claude.
further_reading:

---

{{< callout btn_hidden="true" header="Join the Preview!">}}
Agentic Onboarding is in Preview.
{{< /callout >}}

{{< site-region region="gov" >}}
<div class="alert alert-danger">Agentic Onboarding is not available in the selected site ({{< region-param key="dd_site_name" >}}) at this time.</div>
{{< /site-region >}}

## Overview

Datadog's Agentic Onboarding allows you to instrument your frontend applications with one prompt using LLM coding agents like [Cursor][1] or [Claude][2].

Instead of navigating multiple setup steps or searching through documentation, you can instrument your frontend applications for [Error Tracking][3], [Real User Monitoring (RUM)][4], and [Product Analytics][5] in one command.

With Agentic Onboarding, your coding assistant automatically detects your project's frameworks, adds the necessary configuration, and creates the required tokens and apps, all without leaving your IDE.

## Prerequisites
### Supported frameworks
Agentic Onboarding is available for the following frameworks: React, Next.js, Vue, Svelte, Angular, Vanilla JS, iOS, Android

## Setup

### Install the Datadog Onboarding MCP server

To install the Datadog Onboarding Model Context Protocol (MCP) server, follow the steps below.

1. Copy the deeplink or command for your AI agent client:

{{< tabs >}}
{{% tab "Cursor" %}}

Paste the following Cursor deeplink into your browser.

{{% site-region region="us" %}}

```shell
cursor://anysphere.cursor-deeplink/mcp/install?name=datadog-onboarding-mcp&config=eyJ1cmwiOiJodHRwczovL21jcC5kYXRhZG9naHEuY29tL2FwaS91bnN0YWJsZS9tY3Atc2VydmVyL21jcD90b29sc2V0cz1vbmJvYXJkaW5nIiwidHlwZSI6Im9hdXRoIn0=
```
{{% /site-region %}}

{{% site-region region="us3" %}}
```shell
cursor://anysphere.cursor-deeplink/mcp/install?name=datadog-onboarding-us3&config=eyJ1cmwiOiJodHRwczovL21jcC51czMuZGF0YWRvZ2hxLmNvbS9hcGkvdW5zdGFibGUvbWNwLXNlcnZlci9tY3A/dG9vbHNldHM9b25ib2FyZGluZyIsInR5cGUiOiJvYXV0aCJ9
```
{{% /site-region %}}

{{% site-region region="us5" %}}
```shell
cursor://anysphere.cursor-deeplink/mcp/install?name=datadog-onboarding-us5&config=eyJ1cmwiOiJodHRwczovL21jcC51czUuZGF0YWRvZ2hxLmNvbS9hcGkvdW5zdGFibGUvbWNwLXNlcnZlci9tY3A/dG9vbHNldHM9b25ib2FyZGluZyIsInR5cGUiOiJvYXV0aCJ9
```
{{% /site-region %}}

{{% site-region region="eu" %}}
```shell
cursor://anysphere.cursor-deeplink/mcp/install?name=datadog-onboarding-mcp&config=eyJ1cmwiOiJodHRwczovL21jcC5kYXRhZG9naHEuZXUvYXBpL3Vuc3RhYmxlL21jcC1zZXJ2ZXIvbWNwP3Rvb2xzZXRzPW9uYm9hcmRpbmciLCJ0eXBlIjoib2F1dGgifQ==
```
{{% /site-region %}}

{{% site-region region="ap1" %}}
```shell
cursor://anysphere.cursor-deeplink/mcp/install?name=datadog-onboarding-ap1&config=eyJ1cmwiOiJodHRwczovL21jcC5hcDEuZGF0YWRvZ2hxLmNvbS9hcGkvdW5zdGFibGUvbWNwLXNlcnZlci9tY3A/dG9vbHNldHM9b25ib2FyZGluZyIsInR5cGUiOiJvYXV0aCJ9
```
{{% /site-region %}}

{{% site-region region="ap2" %}}
```shell
cursor://anysphere.cursor-deeplink/mcp/install?name=datadog-onboarding-ap2&config=eyJ1cmwiOiJodHRwczovL21jcC5hcDIuZGF0YWRvZ2hxLmNvbS9hcGkvdW5zdGFibGUvbWNwLXNlcnZlci9tY3A/dG9vbHNldHM9b25ib2FyZGluZyIsInR5cGUiOiJvYXV0aCJ9
```
{{% /site-region %}}

{{< site-region region="gov" >}}
<div class="alert alert-danger">Agentic Onboarding is not available in the selected site ({{< region-param key="dd_site_name" >}}) at this time.</div>
{{< /site-region >}}

{{% /tab %}}

{{% tab "Claude Code" %}}

Copy and execute the Claude Code command into your terminal:

{{% site-region region="us" %}}
```shell
claude mcp add --transport http datadog-onboarding-us1 "https://mcp.datadoghq.com/api/unstable/mcp-server/mcp?toolsets=onboarding"
```
{{% /site-region %}}

{{% site-region region="us3" %}}
```shell
claude mcp add --transport http datadog-onboarding-us3 "https://mcp.us3.datadoghq.com/api/unstable/mcp-server/mcp?toolsets=onboarding"
```
{{% /site-region %}}

{{% site-region region="us5" %}}
```shell
claude mcp add --transport http datadog-onboarding-us5 "https://mcp.us5.datadoghq.com/api/unstable/mcp-server/mcp?toolsets=onboarding"
```
{{% /site-region %}}

{{% site-region region="eu" %}}
```shell
claude mcp add --transport http datadog-onboarding-eu1 "https://mcp.datadoghq.eu/api/unstable/mcp-server/mcp?toolsets=onboarding
```
{{% /site-region %}}

{{% site-region region="ap1" %}}
```shell
claude mcp add --transport http datadog-onboarding-ap1 "https://mcp.ap1.datadoghq.com/api/unstable/mcp-server/mcp?toolsets=onboarding"
```
{{% /site-region %}}

{{% site-region region="ap2" %}}
```shell
claude mcp add --transport http datadog-onboarding-ap2 "https://mcp.ap2.datadoghq.com/api/unstable/mcp-server/mcp?toolsets=onboarding"
```
{{% /site-region %}}

{{< site-region region="gov" >}}
<div class="alert alert-danger">Agentic Onboarding is not available in the selected site ({{< region-param key="dd_site_name" >}}) at this time.</div>
{{< /site-region >}}

{{% /tab %}}
{{< /tabs >}}

2. In your AI agent client, click **Install** for the `datadog-onboarding-mcp` server.
3. If you see a **Needs login** link under the installed MCP server, click the link to complete the Oauth process.
4. When prompted to open an external website, click **Open**.
5. After you've granted access to your Datadog account, you are redirected to Cursor. Click **Open** to complete the authentication process.
5. Confirm you see MCP tools listed for the `datadog-onboarding-mcp` server.

### Set up your project

Your AI coding agent can automatically configure Datadog for your project. When you provide a setup prompt, your coding agent does the following:

- Analyze your project and identify if the MCP server offers a tool that can be used to set it up with Datadog
- Call the tool (asking for your permission before doing so) with inferred parameters from your project (for example: your project's framework, language, and bundler)
- Follow the instructions the MCP tool provides as context to your coding agent, making code changes on your behalf (don't worry - Datadog does not commit them)
- Provide testing steps to confirm that your application is correctly configured to send telemetry to Datadog

1. To get started, copy and paste the following prompt based on the product you want to use into your coding agent (such as Cursor or Claude Code):

{{< tabs >}}
{{% tab "Error Tracking" %}}
```console
Add Datadog Error Tracking to my project
```
{{% /tab %}}

{{% tab "Real User Monitoring" %}}
```console
Add Datadog Real User Monitoring to my project
```
{{% /tab %}}

{{% tab "Product Analytics" %}}
```console
Add Datadog Product Analytics to my project
```
{{% /tab %}}
{{< /tabs >}}

2. After pasting the prompt, review and accept each action your AI agent proposes to move through the setup process.

### Deploy your app to production

Depending on how your application is deployed, you need to commit the changes and set or upload provided environment variables to your production environment.

[1]: https://cursor.com/
[2]: https://claude.ai/
[3]: /error_tracking/frontend_monitoring
[4]: /real_user_monitoring/
[5]: /product_analytics/
[6]: https://platform.openai.com/docs/guides/text
[7]: https://github.com/langchain-ai/langgraph
[8]: https://github.com/vercel/ai-chatbot

13 changes: 13 additions & 0 deletions content/en/error_tracking/_index.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,19 @@ Additional features are available depending on the source of the error. See [sup
- Take a tour of key Error Tracking features in the [Error Tracking Explorer][5] documentation.
- Use the product-specific links in the next section to set up Error Tracking for a particular error source.

## Setup
{{< whatsnext desc="To get started with Datadog Error Tracking, see the corresponding documentation:" >}}
{{< nextlink href="error_tracking/frontend/browser" >}}Browser{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/browser" >}}Browser{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/mobile/android" >}}Android{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/mobile/ios" >}}iOS{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/mobile/expo" >}}Expo{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/mobile/reactnative" >}}React Native{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/mobile/flutter" >}}Flutter{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/mobile/kotlin_multiplatform" >}}Kotlin Multiplatform{{< /nextlink >}}
{{< nextlink href="error_tracking/frontend/logs" >}}Logs{{< /nextlink >}}
{{< /whatsnext >}}

## Supported error sources

Error Tracking captures and processes errors across your web, mobile, and backend applications. You can instrument your applications and services using the [Browser SDK][6], [Mobile SDK][7], or ingest errors from your Logs, Traces, and Real User Monitoring events.
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
---
title: Agentic Onboarding for RUM
description: Instrument your frontend application with one prompt using LLM coding agents like Cursor or Claude.
---

{{< include-markdown "agentic_onboarding/setup" >}}
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,14 @@ The Datadog Android SDK supports Android 6.0+ (API level 23) and Android TV.

## Setup

To start sending RUM data from your Android or Android TV application to Datadog:
**Choose your setup method:**

- **[Agentic Onboarding (in Preview)][18]**: Use AI coding agents (Cursor, Claude Code) to automatically instrument your Android application with one prompt. The agent detects your project structure and configures the RUM SDK for you.
- **Manual setup** (below): Follow the step-by-step instructions to manually add and configure the RUM SDK in your Android application.

### Manual setup

To start sending RUM data from your Android or Android TV application to Datadog, follow the steps below.

### Step 1 - Declare the Android SDK as a dependency

Expand Down Expand Up @@ -637,3 +644,4 @@ val inputStream = context.getRawResAsRumResource(id)
[15]: https://square.github.io/okhttp/features/interceptors/#network-interceptors
[16]: /real_user_monitoring/application_monitoring/android/advanced_configuration/#automatically-track-network-requests
[17]: https://square.github.io/okhttp/features/interceptors/
[18]: /real_user_monitoring/application_monitoring/agentic_onboarding/?tab=realusermonitoring
Original file line number Diff line number Diff line change
Expand Up @@ -12,22 +12,25 @@ further_reading:
## Setup

{{< whatsnext desc="Choose the instrumentation type for the Browser SDK:" >}}
{{< nextlink href="real_user_monitoring/application_monitoring/browser/setup/client">}}<u>Client-Side</u>: Instrument each of your browser-based web applications, deploy the application, then configure the initialization parameters you want to track, and use advanced configuration to further manage data and context that RUM collects.{{< /nextlink >}}
{{< nextlink href="/real_user_monitoring/application_monitoring/browser/setup/server">}}<u>Auto-Instrumentation</u>: Inject a RUM SDK JavaScript scriptlet into the HTML responses of your web applications being served through a web server or proxy.{{< /nextlink >}}
{{< nextlink href="/real_user_monitoring/application_monitoring/agentic_onboarding">}}<u>Agentic Onboarding</u>: Instrument your frontend applications with one prompt using LLM coding agents like Cursor or Claude.{{< /nextlink >}}
{{< nextlink href="real_user_monitoring/application_monitoring/browser/setup/client">}}<u>Client-Side</u>: Instrument each of your browser-based web applications, deploy the application, then configure the initialization parameters you want to track, and use advanced configuration to further manage data and context that RUM collects.{{< /nextlink >}}
{{< /whatsnext >}}

## How to choose the instrumentation type

| | Auto-instrumentation (Preview) | Client-side (Manual) |
|----------------------|--------------------------------|----------------------|
| **SDK setup mechanism** | [Automatically][1] add RUM JS to your web app HTML. Once RUM Auto-instrumentation is set-up, manage configurations from the UI. | [Manually][2] add the RUM SDK to your application code and manage configurations in code. |
| **Code changes required** | No | Yes |
| **Setup complexity** | Low | Medium |
| **User groups** | **SRE and engineering teams** without access to frontend code, or **teams who need to manage** all observability needs centrally, may find this useful for: <br> - Unlocking performance data across all applications upon setting up RUM <br> - Holistically monitoring application performance across the organization | **Frontend engineering, mobile engineering, or product teams** with access to frontend code may find this method useful for: <br> - Daily engineering needs (for example: live support, troubleshooting, and health checks for downstream services) <br> -Product needs (for example: user flow analysis, user segmentation, and feature flag tracking) <br> - Capturing observability from in-house code or complex functions that aren't captured by automatic instrumentation |
| | Auto-instrumentation (Preview) | Agentic Onboarding (Preview) | Client-side (Manual) |
|----------------------|--------------------------------|------------------------------|----------------------|
| **SDK setup mechanism** | [Automatically][1] add RUM JS to your web app HTML. Once RUM Auto-instrumentation is set-up, manage configurations from the UI. | [AI-guided setup][3] that automatically detects your project's framework and adds the RUM SDK with one prompt using coding agents. | [Manually][2] add the RUM SDK to your application code and manage configurations in code. |
| **Code changes required** | No | Yes (automated by AI agent) | Yes |
| **Setup complexity** | Low | Low | Medium |
| **Supported platforms** | Apache, IBM HTTP Server, Java Servlet, Nginx, Windows IIS | Next.js, React, Svelte, Vue, Vanilla JavaScript | All browser-based applications |
| **User groups** | **SRE and engineering teams** without access to frontend code, or **teams who need to manage** all observability needs centrally, may find this useful for: <br> - Unlocking performance data across all applications upon setting up RUM <br> - Holistically monitoring application performance across the organization | **Teams using AI coding agents** (Cursor, Claude Code) may find this useful for: <br> - Accelerating RUM setup with AI-guided instrumentation <br> - Automating framework detection and SDK configuration <br> - Reducing time-to-observability for new projects | **Frontend engineering, mobile engineering, or product teams** with access to frontend code may find this method useful for: <br> - Daily engineering needs (for example: live support, troubleshooting, and health checks for downstream services) <br> -Product needs (for example: user flow analysis, user segmentation, and feature flag tracking) <br> - Capturing observability from in-house code or complex functions that aren't captured by automatic instrumentation |

## Further reading

{{< partial name="whats-next/whats-next.html" >}}

[1]: /real_user_monitoring/application_monitoring/browser/setup/server
[2]: /real_user_monitoring/application_monitoring/browser/setup/client
[3]: /real_user_monitoring/application_monitoring/agentic_onboarding/?tab=realusermonitoring
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,14 @@ Before you begin, ensure you have:

## Setup

To start sending RUM data from your iOS or tvOS application to Datadog:
**Choose your setup method:**

- **[Agentic Onboarding (in Preview)][14]**: Use AI coding agents (Cursor, Claude Code) to automatically instrument your iOS application with one prompt. The agent detects your project structure and configures the RUM SDK for you.
- **Manual setup** (below): Follow the step-by-step instructions to manually add and configure the RUM SDK in your iOS application.

### Manual setup

To start sending RUM data from your iOS or tvOS application to Datadog, follow the steps below.

### Step 1 - Add the iOS SDK as a dependency

Expand Down Expand Up @@ -553,3 +560,4 @@ See [Supported versions][9] for a list of operating system versions and platform
[11]: /real_user_monitoring/ios/web_view_tracking/
[12]: /real_user_monitoring/ios/data_collected/
[13]: https://app.datadoghq.com/rum/application/
[14]: /real_user_monitoring/application_monitoring/agentic_onboarding/?tab=realusermonitoring
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,15 @@ The React Native SDK supports the following services:

## Setup

**Choose your setup method:**

- **[Agentic Onboarding (in Preview)][15]**: Use AI coding agents (Cursor, Claude Code) to automatically instrument your React Native application with one prompt. The agent detects your project structure and configures the RUM SDK for you.
- **Manual setup** (below): Follow the step-by-step instructions to manually add and configure the RUM SDK in your React Native application.

### Manual setup

To start sending RUM data from your React Native application to Datadog, follow the steps below.

To install with NPM, run:

```sh
Expand Down Expand Up @@ -478,3 +487,4 @@ end
[12]: https://support.apple.com/guide/security/security-of-runtime-process-sec15bfe098e/web
[13]: https://stackoverflow.com/questions/37388126/use-frameworks-for-only-some-pods-or-swift-pods/60914505#60914505
[14]: https://reactnative.dev/architecture/landing-page
[15]: /real_user_monitoring/application_monitoring/ios/agentic_onboarding/?tab=realusermonitoring
Loading