Skip to content

Data-Wrangling-and-Visualisation/CitationFlow.AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CitationFlow.AI Logo

CitationFlow.AI

Graph-Based Visualization of the AI Research Landscape

License: MIT Python 3.9+ D3.js 7.8+


📌 Table of Contents


🚀 Overview

CitationFlow.AI is an interactive tool that maps the evolving landscape of artificial intelligence research as a dynamic citation graph. It enables users to visually explore relationships between papers, discover emerging topics, and identify influential authors—without reading hundreds of articles.

Try by your self here

🔑 Key Features

Feature Description
Graph Visualization Force-directed graph of articles (nodes) and citations (edges).
Insightful Statistics Explore top authors, trending topics, and dataset summaries.
Advanced Filtering Drill down into specific research areas, timeframes, or authors.

Target Users: AI researchers, students, and professionals exploring scholarly literature.
Data Source: ScienceDirect API


🛠️ Tech Stack

🗃️ Backend & Database

Technology Purpose
Python 3.9+ Data pipeline, API integration, backend logic
FastAPI Fast and modern web API framework
Pandas Data wrangling and transformation
PostgreSQL Structured storage for citation networks

🎨 Frontend & Visualization

Technology Purpose
D3.js 7.8+ Graph rendering and force simulations
JavaScript (ES6+) Interactive UI and event handling

⚡ Getting Started

🐳 Quick Setup (via Docker)

  1. Create a .env file with your database credentials:

    DB_USER=postgres
    DB_PASSWORD=password
    DB_NAME=cf_test
    DB_HOST=db
    DB_PORT=5432
  2. Clone the repository:

    git clone https://github.com/Data-Wrangling-and-Visualisation/CitationFlow.AI
    cd CitationFlow.AI
  3. Build and launch the app:

    docker-compose up --build
  4. Access the app in your browser:
    🔗 http://localhost


🗺️ Roadmap

Phase Status Key Tasks
Project Setup & API Integration Base structure, ScienceDirect API integration
Data Pipeline Extraction, cleaning, DB schema design
Visualization Interactive D3.js graph
UI/UX Enhancements Filters, search, responsive interface
Performance Optimization Graph rendering optimizations and testing

🔮 Upcoming Features

  • 🕒 Temporal Visualization – View research trends evolving over time
  • 🎛️ Custom Views – Save/export subgraphs and favorite topics
  • 🤝 Collaboration Tools – Shared bookmarks, notes, and annotations

🙏 Acknowledgements


👥 Contributors

Role Name Email
Team Lead Marsel Berheev m.berheeev@innopolis.university
Data Engineer Nikita Stepankov n.stepankov@innopolis.university
DB Architect Makar Egorov m.egorov@innopolis.university

📜 License

This project is licensed under the MIT License.


✨ Explore the future of AI research with CitationFlow.AI ✨

About

DWV course project

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published