Orientation-Aware Graph Neural Network for Assessing Multimeric Interfaces of Protein Complex Structures
The project requires several ML-specific libraries, it's easier to setup with Anaconda:
-
Clone the repository
git clone https://github.com/Bhattacharya-Lab/ORIGAMI.git cd ORIGAMI -
Set up the environment
conda env create -f origami_environment.yml conda activate origami
-
Install
pip install -e .
We provide a command-line interface for ORIGAMI that can easily be used to score protein-protein complexes. The command-line interface can be used as follows:
$ origami-score -h
usage: origami-score [-h] [--checkpoint CHECKPOINT] [--config CONFIG] [--device DEVICE] [--output OUTPUT] [--json] pdb
Score a protein-protein complex using ORIGAMI.
positional arguments:
pdb Path to the input PDB file containing two chains.
optional arguments:
-h, --help show this help message and exit
--checkpoint CHECKPOINT
Path to the pretrained checkpoint (.pt).
--config CONFIG YAML configuration used during training.
--device DEVICE Torch device identifier (e.g. cuda, cuda:0, cpu).
--output OUTPUT Optional path to write the prediction score as JSON.
--json Print the prediction as JSON instead of a plain float.Example, score the H1245TS028_4.pdb complex (in ORIGAMI/example)
$ conda activate origami
(origami) $ origami-score ORIGAMI/example/H1245TS028_4.pdb
(origami) $ origami-score /home/grads/xinyu0110/ORIGAMI/example/H1245TS028_4.pdb
Predicted iLDDT for protein complex H1245TS028_4.pdb is: 0.752040From the output above you can see that the predicted iLDDT for the H1245TS028_4 complex is 0.752040
For questions or collaboration requests, reach out to the maintainers:
- Xinyu Wang — Virginia Tech —
xinyu0110@vt.edu