diff --git a/Keras/Models.py b/Keras/Models.py index f2c13a5..79c0a9d 100644 --- a/Keras/Models.py +++ b/Keras/Models.py @@ -49,7 +49,7 @@ def train_Bi_LSTM(X, Y, epochs = 30, validation_split = 0.2, patience=20): history = LossHistory() earlyStopping = EarlyStopping(monitor='val_loss', min_delta=0.00001, patience=patience, verbose=0, mode='auto') - final_model.fit([X], Y, validation_split = 0.2, nb_epoch = epochs, callbacks=[history, earlyStopping]) + final_model.fit([X], Y, validation_split = validation_split, nb_epoch = epochs, callbacks=[history, earlyStopping]) return final_model, history @@ -65,7 +65,7 @@ def train_2_Bi_LSTM_mask(X, Y, epochs = 30, validation_split = 0.2, patience=20) history = LossHistory() earlyStopping = EarlyStopping(monitor='val_loss', min_delta=0.00001, patience=patience, verbose=0, mode='auto') - model.fit(X, Y, validation_split = 0.2, nb_epoch = epochs, callbacks=[history, earlyStopping]) + model.fit(X, Y, validation_split = validation_split, nb_epoch = epochs, callbacks=[history, earlyStopping]) return model, history @@ -84,6 +84,6 @@ def train_2_Bi_LSTM(X, Y, epochs = 30, validation_split = 0.2, patience=20): history = LossHistory() earlyStopping = EarlyStopping(monitor='val_loss', min_delta=0.00001, patience=patience, verbose=0, mode='auto') - final_model.fit([X], Y, validation_split = 0.2, nb_epoch = epochs, callbacks=[history, earlyStopping]) + final_model.fit([X], Y, validation_split = validation_split, nb_epoch = epochs, callbacks=[history, earlyStopping]) return final_model, history \ No newline at end of file