@@ -65,7 +65,7 @@ class WindTurbine(object):
6565 Diameter of the rotor in m. Default: None.
6666 power_coefficient_curve : None, pandas.DataFrame or dictionary
6767 Power coefficient curve of the wind turbine. DataFrame/dictionary must
68- have 'wind_speed' and 'power coefficient ' columns/keys with wind speeds
68+ have 'wind_speed' and 'power_coefficient ' columns/keys with wind speeds
6969 in m/s and the corresponding power coefficients. Default: None.
7070 power_curve : None, pandas.DataFrame or dictionary
7171 Power curve of the wind turbine. DataFrame/dictionary must have
@@ -82,11 +82,12 @@ class WindTurbine(object):
8282 Notes
8383 ------
8484 Your wind turbine object should have a power coefficient or power curve.
85- You can set the `fetch_curve` parameter and the `data_source` parameter
86- want to automatically fetch a curve from a data set provided in the Open
87- Energy Database (oedb) or want to read a csv file that you provide.
85+ You can set the `fetch_curve` parameter and the `data_source` parameter if
86+ you want to automatically fetch a curve from a data set provided in the
87+ Open Energy Database (oedb) or want to read a csv file that you provide.
8888 See `example_power_curves.csv' and `example_power_coefficient_curves.csv`
89- in example/data for the required form of such a csv file.
89+ in example/data for the required form of such a csv file (more columns can
90+ be added).
9091
9192 Examples
9293 --------
@@ -127,11 +128,10 @@ def fetch_turbine_data(self, fetch_curve, data_source):
127128
128129 Method fetches nominal power as well as power coefficient curve or
129130 power curve from a data set provided in the Open Energy Database
130- (oedb). You can also use this function to import your own power
131- (coefficient) curves from a file. For that the wind speeds in m/s have
132- to be in the first row and the corresponding power coefficient curve
133- values or power curve values in W in a row where the first column
134- contains the turbine name.
131+ (oedb). You can also import your own power (coefficient) curves from a
132+ file. For that the wind speeds in m/s have to be in the first row and
133+ the corresponding power coefficient curve values or power curve values
134+ in W in a row where the first column contains the turbine name.
135135 See `example_power_curves.csv' and
136136 `example_power_coefficient_curves.csv` in example/data for the required
137137 form of a csv file (more columns can be added). See
@@ -350,7 +350,10 @@ def get_turbine_types(print_out=True):
350350 ----------
351351 print_out : boolean
352352 Directly prints a tabular containing the turbine types in column
353- 'turbine_type'. Default: True.
353+ 'turbine_type', the manufacturer in column 'manufacturer' and
354+ information about whether a power (coefficient) curve exists (True) or
355+ not (False) in columns 'has_power_curve' and 'has_cp_curve'.
356+ Default: True.
354357
355358 Examples
356359 --------
@@ -377,7 +380,7 @@ def get_turbine_types(print_out=True):
377380 p_curves_df = df .iloc [df .loc [df ['has_power_curve' ] == True ].index ][
378381 ['manufacturer' , 'turbine_type' , 'has_power_curve' ]]
379382 curves_df = pd .merge (p_curves_df , cp_curves_df , how = 'outer' ,
380- sort = True ).fillna (False )
383+ sort = True ).fillna (False )
381384 if print_out :
382385 pd .set_option ('display.max_rows' , len (curves_df ))
383386 print (curves_df )
0 commit comments