|
| 1 | +#!/usr/bin/env python3 |
| 2 | +"""Compute the Empirical Fisher matrix using a list of gradients. |
| 3 | +
|
| 4 | +The gradient tensors can be spread over multiple npz files. The mean |
| 5 | +is computed over the first dimension (supposed to be a batch). |
| 6 | +
|
| 7 | +""" |
| 8 | + |
| 9 | +import argparse |
| 10 | +import os |
| 11 | +import re |
| 12 | +import glob |
| 13 | + |
| 14 | +import numpy as np |
| 15 | + |
| 16 | +from neuralmonkey.logging import log as _log |
| 17 | + |
| 18 | + |
| 19 | +def log(message: str, color: str = "blue") -> None: |
| 20 | + _log(message, color) |
| 21 | + |
| 22 | + |
| 23 | +def main() -> None: |
| 24 | + parser = argparse.ArgumentParser(description=__doc__) |
| 25 | + parser.add_argument("--file_prefix", type=str, |
| 26 | + help="prefix of the npz files containing the gradients") |
| 27 | + parser.add_argument("--output_path", type=str, |
| 28 | + help="Path to output the Empirical Fisher to.") |
| 29 | + args = parser.parse_args() |
| 30 | + |
| 31 | + output_dict = {} |
| 32 | + n = 0 |
| 33 | + for file in glob.glob("{}.*npz".format(args.file_prefix)): |
| 34 | + log("Processing {}".format(file)) |
| 35 | + tensors = np.load(file) |
| 36 | + |
| 37 | + # first dimension must be equal for all tensors (batch) |
| 38 | + shapes = [tensors[f].shape for f in tensors.files] |
| 39 | + assert all([x[0] == shapes[0][0] for x in shapes]) |
| 40 | + |
| 41 | + for varname in tensors.files: |
| 42 | + res = np.sum(np.square(tensors[varname]), 0) |
| 43 | + if varname in output_dict: |
| 44 | + output_dict[varname] += res |
| 45 | + else: |
| 46 | + output_dict[varname] = res |
| 47 | + n += shapes[0][0] |
| 48 | + |
| 49 | + for name in output_dict: |
| 50 | + output_dict[name] /= n |
| 51 | + |
| 52 | + np.savez(args.output_path, **output_dict) |
| 53 | + |
| 54 | + |
| 55 | +if __name__ == "__main__": |
| 56 | + main() |
0 commit comments