|
3 | 3 |
|
4 | 4 | import tensorflow as tf |
5 | 5 | from utensor_cgen.ir import TensorInfo, OperationInfo, uTensorGraph |
| 6 | +from utensor_cgen.ir.converter import (AttrValueConverter, DataTypeConverter, |
| 7 | + GenericTensorConverterMixin) |
6 | 8 | from utensor_cgen.utils import prune_graph, topologic_order_graph |
7 | | - |
8 | | -@fixture(name='hybrid_quant_output') |
9 | | -def simple_tflm_graph(): |
10 | | - ugraph = uTensorGraph() |
11 | | - |
12 | | - mock_input_op0 = OperationInfo( |
13 | | - name = "mock_input_const0", |
14 | | - op_type = "Const", |
15 | | - backend = "tensorflow", |
16 | | - ugraph = ugraph, |
17 | | - op_attr = dict(), |
18 | | - input_tensors = [], |
19 | | - output_tensors = [] |
20 | | - ) |
21 | | - mock_input_op0.op_attr["value"] = np.array([[2],[4],[6],[8]], dtype=np.float32) |
22 | | - mock_input_op0.op_attr["shape"] = [4,1] |
23 | | - |
24 | | - input0 = TensorInfo( |
25 | | - name = "input0", |
26 | | - op_name = "mock_input_const0", |
27 | | - dtype = mock_input_op0.op_attr["value"].dtype, |
28 | | - shape = mock_input_op0.op_attr["shape"], |
29 | | - ugraph = ugraph |
30 | | - ) |
31 | | - |
32 | | - mock_input_op0.output_tensors = [input0] |
33 | | - |
34 | | - mock_input1_op = OperationInfo( |
35 | | - name = "mock_input_const1", |
36 | | - op_type = "Const", |
37 | | - backend = "tensorflow", |
38 | | - ugraph = ugraph, |
39 | | - op_attr = dict(), |
40 | | - input_tensors = [], |
41 | | - output_tensors = [] |
42 | | - ) |
43 | | - mock_input1_op.op_attr["value"] = np.array([[2],[4],[6],[8]], dtype=np.float32) |
44 | | - mock_input1_op.op_attr["shape"] = [4,1] |
45 | | - |
46 | | - input1 = TensorInfo( |
47 | | - name = "input1", |
48 | | - op_name = "mock_input_const1", |
49 | | - dtype = mock_input1_op.op_attr["value"].dtype, |
50 | | - shape = mock_input1_op.op_attr["shape"], |
51 | | - ugraph = ugraph |
52 | | - ) |
53 | | - |
54 | | - mock_input1_op.output_tensors = [input1] |
55 | | - |
56 | | - add_output = TensorInfo( |
57 | | - name = "add_out", |
58 | | - op_name = "add0", |
59 | | - dtype = mock_input_op0.op_attr["value"].dtype, |
60 | | - shape = mock_input_op0.op_attr["shape"], |
61 | | - ugraph = ugraph |
62 | | - ) |
63 | | - |
64 | | - add_op = OperationInfo( |
65 | | - name = "add0", |
66 | | - op_type = "ADD", |
67 | | - backend = "tensorflow", |
68 | | - ugraph = ugraph, |
69 | | - op_attr = dict(), |
70 | | - input_tensors = [input0, input1], |
71 | | - output_tensors = [add_output] |
| 9 | +from utensor_cgen.backend.operators import OperatorFactory, _Operator |
| 10 | +from utensor_cgen.matcher import OpEqualityDelegate, _morphism |
| 11 | + |
| 12 | + |
| 13 | +@OperatorFactory.register |
| 14 | +@OpEqualityDelegate.is_associative( |
| 15 | + permutations=((0, 1), (1, 0)) |
| 16 | +) |
| 17 | +class _TFLM_AddOperator(_Operator): |
| 18 | + |
| 19 | + op_type = "TFLM_ADD" # tf op type |
| 20 | + |
| 21 | + def __init__(self, op_info, **kwargs): |
| 22 | + _Operator.__init__(self) |
| 23 | + inputs = [tensor_info.name for tensor_info in op_info.input_tensors] |
| 24 | + output = op_info.output_tensors[0].name |
| 25 | + tf_dtype = op_info.input_tensors[0].dtype |
| 26 | + |
| 27 | + @classmethod |
| 28 | + def build_op_info(cls, ugraph, name, tensor_x, tensor_y, **kwargs): |
| 29 | + # broadcast the shape and promote types |
| 30 | + dummy_x = np.empty(tensor_x.shape) |
| 31 | + dummy_y = np.empty(tensor_y.shape) |
| 32 | + output_shape = np.broadcast(dummy_x, dummy_y).shape |
| 33 | + output_dtype = np.promote_types(tensor_x.dtype, tensor_y.dtype) |
| 34 | + return OperationInfo( |
| 35 | + name=name, |
| 36 | + input_tensors=[tensor_x, tensor_y], |
| 37 | + output_tensors=[ |
| 38 | + TensorInfo( |
| 39 | + name='{}:0'.format(name), |
| 40 | + op_name=name, |
| 41 | + dtype=output_dtype, |
| 42 | + shape=list(output_shape), |
| 43 | + ugraph=ugraph |
| 44 | + ) |
| 45 | + ], |
| 46 | + op_type=cls.op_type, |
| 47 | + op_attr={ |
| 48 | + 'T': AttrValueConverter.__utensor_generic_type__( |
| 49 | + value_name='type', |
| 50 | + value=DataTypeConverter.get_tf_value(output_dtype) |
| 51 | + ) |
| 52 | + }, |
| 53 | + ugraph=ugraph, |
| 54 | + backend=kwargs.get('backend', 'TFLM') |
72 | 55 | ) |
73 | 56 |
|
74 | | - ugraph.ops_info["ADD0"] = add_op |
75 | 57 |
|
76 | | - weight_op = OperationInfo( |
77 | | - name = "weight_const", |
78 | | - op_type = "Const", |
79 | | - backend = "tensorflow", |
80 | | - ugraph = ugraph, |
81 | | - op_attr = dict(), |
82 | | - input_tensors = [], |
83 | | - output_tensors = [] |
| 58 | +@OperatorFactory.register |
| 59 | +class _TFLM_FULLY_CONNECTED_Operator(_Operator): |
| 60 | + |
| 61 | + op_type="TFLM_FULLY_CONNECTED" |
| 62 | + |
| 63 | + def __init__(self, op_info, **kwargs): |
| 64 | + _Operator.__init__(self) |
| 65 | + inputs = [tensor_info.name for tensor_info in op_info.input_tensors] |
| 66 | + output = op_info.output_tensors[0].name |
| 67 | + out_dtype = op_info.output_tensors[0].dtype |
| 68 | + in_dtypes = [tensor_info.dtype for tensor_info in op_info.input_tensors] |
| 69 | + #assert (op_info.input_tensors[0].shape[1] == None or op_info.input_tensors[0].shape[1] == 1) |
| 70 | + |
| 71 | + @classmethod |
| 72 | + def build_op_info(cls, ugraph, name, tensor_x, tensor_w, tensor_b, **kwargs): |
| 73 | + output_shape = [tensor_w.shape[0], tensor_x.shape[1]] |
| 74 | + #output_dtype = np.promote_types(tensor_x.dtype, tensor_y.dtype) |
| 75 | + output_dtype = tensor_x.dtype |
| 76 | + return OperationInfo( |
| 77 | + name=name, |
| 78 | + input_tensors=[tensor_x, tensor_w, tensor_b], |
| 79 | + output_tensors=[ |
| 80 | + TensorInfo( |
| 81 | + name='{}:0'.format(name), |
| 82 | + op_name=name, |
| 83 | + dtype=output_dtype, |
| 84 | + shape=list(output_shape), |
| 85 | + ugraph=ugraph |
| 86 | + ) |
| 87 | + ], |
| 88 | + op_type=cls.op_type, |
| 89 | + op_attr={ |
| 90 | + 'T': AttrValueConverter.__utensor_generic_type__( |
| 91 | + value_name='type', |
| 92 | + value=DataTypeConverter.get_tf_value(output_dtype) |
| 93 | + ) |
| 94 | + }, |
| 95 | + ugraph=ugraph, |
| 96 | + backend=kwargs.get('backend', 'TFLM') |
84 | 97 | ) |
85 | | - #weight_op.op_attr["value"] = np.array([1,2,3,4], dtype=np.int8) |
86 | | - weight_op.op_attr["value"] = np.array([10,20,30,40], dtype=np.float32) |
87 | | - weight_op.op_attr["shape"] = [1,4] |
88 | 98 |
|
89 | | - weight = TensorInfo( |
90 | | - name = "weight", |
91 | | - op_name = "weight_const", |
92 | | - dtype = np.dtype("float32"), |
93 | | - shape = weight_op.op_attr["shape"], |
94 | | - ugraph = ugraph |
95 | | - ) |
96 | | - weight_op.output_tensors = [weight] |
97 | | - |
98 | | - bias_op = OperationInfo( |
99 | | - name = "bias_const", |
100 | | - op_type = "Const", |
101 | | - backend = "tensorflow", |
102 | | - ugraph = ugraph, |
103 | | - op_attr = dict(), |
104 | | - input_tensors = [], |
105 | | - output_tensors = [] |
106 | | - ) |
107 | | - #bias_op.op_attr["value"] = np.array([1], dtype=np.int8) |
108 | | - bias_op.op_attr["value"] = np.array([7], dtype=np.float32) |
109 | | - bias_op.op_attr["shape"] = [1] |
110 | | - |
111 | | - bias = TensorInfo( |
112 | | - name = "bias", |
113 | | - op_name = "bias_const", |
114 | | - dtype = np.dtype("float32"), |
115 | | - shape = bias_op.op_attr["shape"], |
116 | | - ugraph = ugraph |
117 | | - ) |
118 | | - bias_op.output_tensors = [bias] |
119 | | - |
120 | | - |
121 | | - fc1_op = OperationInfo( |
122 | | - name = "FC1", |
123 | | - op_type = "FULLY_CONNECTED", |
124 | | - backend = "tensorflow", |
125 | | - ugraph = ugraph, |
126 | | - op_attr = dict(), |
127 | | - input_tensors = [], |
128 | | - output_tensors = [] |
129 | | - ) |
130 | | - |
131 | | - output = TensorInfo( |
132 | | - name = "output", |
133 | | - op_name = "FC1", |
134 | | - dtype = np.dtype("float32"), |
135 | | - shape = [1], |
136 | | - ugraph = ugraph |
137 | | - ) |
138 | | - |
139 | | - fc1_op.input_tensors = [add_output, weight, bias] |
140 | | - fc1_op.output_tensors = [output] |
141 | | - |
142 | | - ugraph.ops_info["FC1"] = fc1_op |
143 | | - ugraph.output_nodes = ["FC1"] |
144 | | - #ugraph.backend = "tensorflow" |
145 | | - |
146 | | - topologic_order_graph(ugraph) |
147 | | - #ugraph = prune_graph(ugraph) |
| 99 | +@fixture(name='hybrid_quant_output') |
| 100 | +def simple_tflm_graph(): |
| 101 | + ugraph = uTensorGraph() |
148 | 102 |
|
149 | | - #return: ugraph, input tensors, output tensors |
150 | | - return [ugraph, ["input0", "input1"], ["weight", "bias", "output"]] |
| 103 | + with ugraph.begin_construction(): |
| 104 | + tensor_x0, = ugraph.add_op( |
| 105 | + op_type='Const', |
| 106 | + name='x0', |
| 107 | + value=np.array([1, 1, 1, 1], dtype=np.float32)[:, np.newaxis] |
| 108 | + ) |
| 109 | + tensor_x1, = ugraph.add_op( |
| 110 | + op_type='Const', |
| 111 | + name='x1', |
| 112 | + value=np.array([2, 4, 6, 8], dtype=np.float32)[:, np.newaxis] |
| 113 | + ) |
| 114 | + tensor_w, = ugraph.add_op( |
| 115 | + op_type='Const', |
| 116 | + name='w', |
| 117 | + value=np.array([10, 20, 30, 40], dtype=np.float32)[np.newaxis, :] |
| 118 | + ) |
| 119 | + tensor_b, = ugraph.add_op( |
| 120 | + op_type='Const', |
| 121 | + name='b', |
| 122 | + value=np.array([7], dtype=np.float32) |
| 123 | + ) |
| 124 | + |
| 125 | + |
| 126 | + tensor_addout, = ugraph.add_op( |
| 127 | + tensor_x0, tensor_x1, |
| 128 | + op_type='TFLM_ADD', |
| 129 | + name='TFLM_ADD0' |
| 130 | + ) |
| 131 | + |
| 132 | + tensor_out, = ugraph.add_op( |
| 133 | + tensor_addout, tensor_w, tensor_b, |
| 134 | + op_type='TFLM_FULLY_CONNECTED', |
| 135 | + name='TFLM_FULLY_CONNECTED00', |
| 136 | + is_output=True |
| 137 | + ) |
| 138 | + |
| 139 | + return [ugraph, ["x0:0", "x1:0"], ["w:0", "b:0", tensor_out.name]] |
0 commit comments