|
40 | 40 | #' \item \pkg{keras}: `"keras"` |
41 | 41 | #' } |
42 | 42 | #' |
43 | | -#' @section Engine Details: |
44 | | -#' |
45 | | -#' The standardized parameter names in parsnip can be mapped to their original |
46 | | -#' names in each engine: |
47 | | -#' |
48 | | -#' ```{r echo = FALSE} |
49 | | -#' convert_args("logistic_reg") |
50 | | -#' ``` |
51 | | -#' |
52 | | -#' Engines may have pre-set default arguments when executing the |
53 | | -#' model fit call. For this type of |
54 | | -#' model, the template of the fit calls are: |
55 | | -#' |
56 | | -#' \pkg{glm} |
57 | | -#' |
58 | | -#' \Sexpr[results=rd]{parsnip:::show_fit(parsnip:::logistic_reg(), "glm")} |
59 | | -#' |
60 | | -#' \pkg{glmnet} |
61 | | -#' |
62 | | -#' \Sexpr[results=rd]{parsnip:::show_fit(parsnip:::logistic_reg(), "glmnet")} |
63 | | -#' |
64 | | -#' \pkg{stan} |
65 | | -#' |
66 | | -#' \Sexpr[results=rd]{parsnip:::show_fit(parsnip:::logistic_reg(), "stan")} |
67 | | -#' |
68 | | -#' (note that the `refresh` default prevents logging of the estimation process. Change this value in `set_engine()` will show the logs) |
69 | | -#' |
70 | | -#' \pkg{spark} |
71 | | -#' |
72 | | -#' \Sexpr[results=rd]{parsnip:::show_fit(parsnip:::logistic_reg(), "spark")} |
73 | | -#' |
74 | | -#' \pkg{keras} |
75 | | -#' |
76 | | -#' \Sexpr[results=rd]{parsnip:::show_fit(parsnip:::logistic_reg(), "keras")} |
77 | | -#' |
78 | | -#' For `glmnet` models, the full regularization path is always fit regardless |
79 | | -#' of the value given to `penalty`. Also, there is the option to pass |
80 | | -#' multiple values (or no values) to the `penalty` argument. When using the |
81 | | -#' `predict()` method in these cases, the return value depends on |
82 | | -#' the value of `penalty`. When using `predict()`, only a single |
83 | | -#' value of the penalty can be used. When predicting on multiple |
84 | | -#' penalties, the `multi_predict()` function can be used. It |
85 | | -#' returns a tibble with a list column called `.pred` that contains |
86 | | -#' a tibble with all of the penalty results. |
87 | | -#' |
88 | | -#' For prediction, the `stan` engine can compute posterior |
89 | | -#' intervals analogous to confidence and prediction intervals. In |
90 | | -#' these instances, the units are the original outcome and when |
91 | | -#' `std_error = TRUE`, the standard deviation of the posterior |
92 | | -#' distribution (or posterior predictive distribution as |
93 | | -#' appropriate) is returned. For `glm`, the standard error is in logit units |
94 | | -#' while the intervals are in probability units. |
| 43 | +#' @includeRmd man/rmd/logistic-reg.Rmd details |
95 | 44 | #' |
96 | 45 | #' @note For models created using the spark engine, there are |
97 | 46 | #' several differences to consider. First, only the formula |
|
0 commit comments