@@ -264,39 +264,39 @@ int main() {
264264
265265<TabItem value="javascript" label="Javascript">
266266
267- 1. **Time complexity**: \( O(n)\) , where \(n\) is the length of the input string, as we only iterate through the string once.
268- 2. **Space complexity**: \( O(1)\) , as we use a fixed amount of extra space for the map and pointers.
267+ 1. **Time complexity**: $ O(n)$ , where $n$ is the length of the input string, as we only iterate through the string once.
268+ 2. **Space complexity**: $ O(1)$ , as we use a fixed amount of extra space for the map and pointers.
2692693. This makes the approach efficient and suitable for checking strobogrammatic properties in linear time.
270270
271271</TabItem>
272272
273273<TabItem value="typescript" label="TypeScript">
274274
275- 1. **Time complexity**: \( O(n)\) , where \(n\) is the length of the input string, as we only iterate through the string once.
276- 2. **Space complexity**: \( O(1)\) , as we use a fixed amount of extra space for the map and pointers.
275+ 1. **Time complexity**: $ O(n)$ , where $n$ is the length of the input string, as we only iterate through the string once.
276+ 2. **Space complexity**: $ O(1)$ , as we use a fixed amount of extra space for the map and pointers.
2772773. This makes the approach efficient and suitable for checking strobogrammatic properties in linear time.
278278
279279</TabItem>
280280
281281<TabItem value="python" label="Python">
282282
283- 1. Time complexity: \( O(n)\) , where \(n\) is the length of the input string, as we only iterate through the string once.
284- 2. Space complexity: \( O(1)\) , as we use a fixed amount of extra space for the dictionary and pointers.
283+ 1. Time complexity: $ O(n)$ , where $n$ is the length of the input string, as we only iterate through the string once.
284+ 2. Space complexity: $ O(1)$ , as we use a fixed amount of extra space for the dictionary and pointers.
2852853. This makes the approach efficient and suitable for checking strobogrammatic properties in linear time.
286286
287287</TabItem>
288288
289289<TabItem value="java" label="Java">
290290
291- 1. **Time complexity**: \( O(n)\) , where \(n\) is the length of the input string, as we only iterate through the string once.
292- 2. **Space complexity**: \( O(1)\) , as we use a fixed amount of extra space for the map and pointers.
291+ 1. **Time complexity**: $ O(n)$ , where $n$ is the length of the input string, as we only iterate through the string once.
292+ 2. **Space complexity**: $ O(1)$ , as we use a fixed amount of extra space for the map and pointers.
2932933. This makes the approach efficient and suitable for checking strobogrammatic properties in linear time.
294294
295295</TabItem>
296296<TabItem value="cpp" label="C++">
297297
298- 1. **Time complexity**: \( O(n)\) , where \(n\) is the length of the input string, as we only iterate through the string once.
299- 2. **Space complexity**: \( O(1)\) , as we use a fixed amount of extra space for the map and pointers.
298+ 1. **Time complexity**: $ O(n)$ , where $n$ is the length of the input string, as we only iterate through the string once.
299+ 2. **Space complexity**: $ O(1)$ , as we use a fixed amount of extra space for the map and pointers.
3003003. This makes the approach efficient and suitable for checking strobogrammatic properties in linear time.
301301
302302</TabItem>
0 commit comments