@@ -290,7 +290,7 @@ def congruence_classes(self):
290290 (5, [1, 3])
291291
292292 If this subset is finite, the output of this method is always `(1, [])`.
293- The elements of the subset can be retreived using the method :meth:`list`
293+ The elements of the subset can be retrieved using the method :meth:`list`
294294 or :meth:`included`::
295295
296296 sage: P = Primes(modulus=0, classes=range(50))
@@ -838,7 +838,7 @@ def complement_in_primes(self):
838838
839839 def intersection (self , other ):
840840 r"""
841- Return the intesection of this set with ``other``.
841+ Return the intersection of this set with ``other``.
842842
843843 INPUT:
844844
@@ -891,7 +891,7 @@ def intersection(self, other):
891891
892892 def union (self , other ):
893893 r"""
894- Return the intesection of this set with ``other``.
894+ Return the union of this set and ``other``.
895895
896896 INPUT:
897897
@@ -1058,9 +1058,8 @@ def is_superset(self, other, almost=False):
10581058
10591059 def is_disjoint (self , other , almost = False ):
10601060 r"""
1061- Return ``True`` if the intersection of this set with ``other``
1062- is empty (resp. finite) if ``almost`` is ``False`` (resp. ``True``);
1063- return ``False`` otherwise.
1061+ Return whether the intersection of this set with ``other``
1062+ is empty (or finite, if ``almost`` is ``True``).
10641063
10651064 INPUT:
10661065
0 commit comments