@@ -1006,15 +1006,15 @@ def is_subset(self, other, almost=False):
10061006
10071007 .. SEEALSO::
10081008
1009- :meth:`is_supset `, :meth:`is_disjoint`, :meth:`is_almost_equal`
1009+ :meth:`is_superset `, :meth:`is_disjoint`, :meth:`is_almost_equal`
10101010 """
10111011 P = self .intersection (other )
10121012 if almost :
10131013 return P .is_almost_equal (self )
10141014 else :
10151015 return P == self
10161016
1017- def is_supset (self , other , almost = False ):
1017+ def is_superset (self , other , almost = False ):
10181018 r"""
10191019 Return ``True`` if this set of is supset of ``other``;
10201020 ``False`` otherwise.
@@ -1032,19 +1032,19 @@ def is_supset(self, other, almost=False):
10321032 Set of prime numbers congruent to 1 modulo 4: 5, 13, 17, 29, ...
10331033 sage: Q = Primes(modulus=8); Q
10341034 Set of prime numbers congruent to 1 modulo 8: 17, 41, 73, 89, ...
1035- sage: P.is_supset (Q)
1035+ sage: P.is_superset (Q)
10361036 True
1037- sage: Q.is_supset (P)
1037+ sage: Q.is_superset (P)
10381038 False
10391039
10401040 When ``almost=True``, the inclusion is only checked up to a
10411041 finite set::
10421042
10431043 sage: Q2 = Q.include(2); Q2
10441044 Set of prime numbers congruent to 1 modulo 8 with 2 included: 2, 17, 41, 73, ...
1045- sage: P.is_supset (Q2)
1045+ sage: P.is_superset (Q2)
10461046 False
1047- sage: P.is_supset (Q2, almost=True)
1047+ sage: P.is_superset (Q2, almost=True)
10481048 True
10491049
10501050 .. SEEALSO::
0 commit comments