@@ -849,16 +849,6 @@ point :math:`i` within an element :math:`e` are given by [2]:
849849 \end {bmatrix}\right )
850850
851851
852- Principal Stresses
853- ^^^^^^^^^^^^^^^^^^
854-
855- The principal stresses can be determined from the net axial and shear stress as follows [2]:
856-
857- .. math ::
858- \sigma _1 &= \frac {\sigma _{zz}}{2 } + \sqrt {\left (\frac {\sigma _{zz}}{2 }\right )^2 + \tau _{z,xy}^2 } \\
859- \sigma _2 &= 0 \\
860- \sigma _3 &= \frac {\sigma _{zz}}{2 } - \sqrt {\left (\frac {\sigma _{zz}}{2 }\right )^2 + \tau _{z,xy}^2 }
861-
862852 von Mises Stresses
863853^^^^^^^^^^^^^^^^^^
864854
@@ -899,15 +889,15 @@ Of which the characteristic polynomial can then be written:
899889 where the stress invariants :math: `I` are then given by [5]:
900890
901891.. math ::
902- I_1 &= \textnormal (\boldsymbol {\sigma }) = \sigma _{zz} \\
903- I_2 &= \frac {1 }{2 }\left [ ( \textnormal (\boldsymbol {\sigma })^2 - \textnormal (\boldsymbol {\sigma }^2 )) \right ] = -\tau _{zx}^2 - \tau _{yz }^2 \\
892+ I_1 &= \textrm {tr} (\boldsymbol {\sigma }) = \sigma _{zz} \\
893+ I_2 &= \frac {1 }{2 }\left [\textrm {tr} (\boldsymbol {\sigma })^2 - \textrm {tr} (\boldsymbol {\sigma }^2 ) \right ] = -\tau _{zx}^2 - \tau _{zy }^2 \\
904894 I_3 &= \det (\boldsymbol {\sigma }) = 0
905895
906896 and thus, the cubic polynomial reduces to a quadratic, the two roots of which are then the first
907897and third principal stresses (with :math: `\sigma _2 = 0 `):
908898
909899.. math ::
910- \sigma _{1 ,3 } = \frac {\sigma _{zz}}{2 } \pm \sqrt { \left (\frac {\sigma _{zz}}{2 }\right )^2 + \tau _{zx}^2 + \tau _{yz }^2 }
900+ \sigma _{1 ,3 } = \frac {\sigma _{zz}}{2 } \pm \sqrt { \left (\frac {\sigma _{zz}}{2 }\right )^2 + \tau _{zx}^2 + \tau _{zy }^2 }
911901
912902 .. _label-theory-composite :
913903
@@ -959,4 +949,4 @@ References
959949
9609504. AS 4100 - 1998: Steel Structures. (1998, June). Standards Australia.
961951
962- 5. Oñate, E. (2009), Structural Analysis with the Finite Element Method. Linear Statics. Volume 1 : The Basis and Solids, Springer Netherlands
952+ 5. Oñate, E. (2009), Structural Analysis with the Finite Element Method. Linear Statics. Volume 1: The Basis and Solids, Springer Netherlands
0 commit comments