Skip to content

Commit 8c3c6c4

Browse files
Fix principal stress docs equations pt2
1 parent 70f0e99 commit 8c3c6c4

File tree

1 file changed

+4
-14
lines changed

1 file changed

+4
-14
lines changed

docs/source/rst/theory.rst

Lines changed: 4 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -849,16 +849,6 @@ point :math:`i` within an element :math:`e` are given by [2]:
849849
\end{bmatrix}\right)
850850
851851
852-
Principal Stresses
853-
^^^^^^^^^^^^^^^^^^
854-
855-
The principal stresses can be determined from the net axial and shear stress as follows [2]:
856-
857-
.. math::
858-
\sigma_1 &= \frac{\sigma_{zz}}{2} + \sqrt{\left(\frac{\sigma_{zz}}{2}\right)^2 + \tau_{z,xy}^2} \\
859-
\sigma_2 &= 0 \\
860-
\sigma_3 &= \frac{\sigma_{zz}}{2} - \sqrt{\left(\frac{\sigma_{zz}}{2}\right)^2 + \tau_{z,xy}^2}
861-
862852
von Mises Stresses
863853
^^^^^^^^^^^^^^^^^^
864854

@@ -899,15 +889,15 @@ Of which the characteristic polynomial can then be written:
899889
where the stress invariants :math:`I` are then given by [5]:
900890

901891
.. math::
902-
I_1 &= \textnormal(\boldsymbol{\sigma}) = \sigma_{zz} \\
903-
I_2 &= \frac{1}{2}\left[ (\textnormal(\boldsymbol{\sigma})^2 - \textnormal(\boldsymbol{\sigma}^2)) \right] = -\tau_{zx}^2 - \tau_{yz}^2 \\
892+
I_1 &= \textrm{tr}(\boldsymbol{\sigma}) = \sigma_{zz} \\
893+
I_2 &= \frac{1}{2}\left[\textrm{tr}(\boldsymbol{\sigma})^2 - \textrm{tr}(\boldsymbol{\sigma}^2) \right] = -\tau_{zx}^2 - \tau_{zy}^2 \\
904894
I_3 &= \det(\boldsymbol{\sigma}) = 0
905895
906896
and thus, the cubic polynomial reduces to a quadratic, the two roots of which are then the first
907897
and third principal stresses (with :math:`\sigma_2 = 0`):
908898

909899
.. math::
910-
\sigma_{1,3} = \frac{\sigma_{zz}}{2} \pm \sqrt{ \left(\frac{\sigma_{zz}}{2}\right)^2 + \tau_{zx}^2 + \tau_{yz}^2 }
900+
\sigma_{1,3} = \frac{\sigma_{zz}}{2} \pm \sqrt{ \left(\frac{\sigma_{zz}}{2}\right)^2 + \tau_{zx}^2 + \tau_{zy}^2 }
911901
912902
.. _label-theory-composite:
913903

@@ -959,4 +949,4 @@ References
959949

960950
4. AS 4100 - 1998: Steel Structures. (1998, June). Standards Australia.
961951

962-
5. Oñate, E. (2009), Structural Analysis with the Finite Element Method. Linear Statics. Volume 1 : The Basis and Solids, Springer Netherlands
952+
5. Oñate, E. (2009), Structural Analysis with the Finite Element Method. Linear Statics. Volume 1: The Basis and Solids, Springer Netherlands

0 commit comments

Comments
 (0)