|
1 | 1 | from __future__ import annotations |
| 2 | + |
| 3 | +import datetime |
2 | 4 | from typing import Optional, Dict, Any, List, Type, TypeVar, Generic |
3 | 5 |
|
4 | | -from ravendb.documents.session.time_series import TimeSeriesEntry, TypedTimeSeriesEntry |
| 6 | +from ravendb.documents.session.time_series import TimeSeriesEntry, TypedTimeSeriesEntry, TimeSeriesValuesHelper |
| 7 | +from ravendb.tools.utils import Utils |
5 | 8 |
|
6 | 9 | _T_TS_Bindable = TypeVar("_T_TS_Bindable") |
7 | 10 |
|
@@ -47,3 +50,139 @@ def from_json(cls, json_dict: Dict[str, Any]) -> TimeSeriesQueryResult: |
47 | 50 | json_dict["Count"], |
48 | 51 | [TypedTimeSeriesEntry.from_json(typed_ts_entry_json) for typed_ts_entry_json in json_dict["Results"]], |
49 | 52 | ) |
| 53 | + |
| 54 | + |
| 55 | +class TimeSeriesQueryBuilder: |
| 56 | + def __init__(self, query: str = None): |
| 57 | + self._query = query |
| 58 | + |
| 59 | + @property |
| 60 | + def query_text(self): |
| 61 | + return self._query |
| 62 | + |
| 63 | + def raw(self, query_text: str) -> TimeSeriesQueryResult: |
| 64 | + self._query = query_text |
| 65 | + return None |
| 66 | + |
| 67 | + |
| 68 | +class TimeSeriesRangeAggregation: |
| 69 | + def __init__( |
| 70 | + self, |
| 71 | + count: List[int] = None, |
| 72 | + max: List[float] = None, |
| 73 | + min: List[float] = None, |
| 74 | + last: List[float] = None, |
| 75 | + first: List[float] = None, |
| 76 | + average: List[float] = None, |
| 77 | + sum: List[float] = None, |
| 78 | + to_date: datetime.datetime = None, |
| 79 | + from_date: datetime.datetime = None, |
| 80 | + ): |
| 81 | + self.count = count |
| 82 | + self.max = max |
| 83 | + self.min = min |
| 84 | + self.last = last |
| 85 | + self.first = first |
| 86 | + self.average = average |
| 87 | + self.sum = sum |
| 88 | + self.to_date = to_date |
| 89 | + self.from_date = from_date |
| 90 | + |
| 91 | + @classmethod |
| 92 | + def from_json(cls, json_dict: Dict[str, Any]) -> TimeSeriesRangeAggregation: |
| 93 | + return cls( |
| 94 | + json_dict["Count"] if "Count" in json_dict else None, |
| 95 | + json_dict["Max"] if "Max" in json_dict else None, |
| 96 | + json_dict["Min"] if "Min" in json_dict else None, |
| 97 | + json_dict["Last"] if "Last" in json_dict else None, |
| 98 | + json_dict["First"] if "First" in json_dict else None, |
| 99 | + json_dict["Average"] if "Average" in json_dict else None, |
| 100 | + json_dict["Sum"] if "Sum" in json_dict else None, |
| 101 | + Utils.string_to_datetime(json_dict["To"]), |
| 102 | + Utils.string_to_datetime(json_dict["From"]), |
| 103 | + ) |
| 104 | + |
| 105 | + def as_typed_entry( |
| 106 | + self, ts_bindable_object_type: Type[_T_TS_Bindable] |
| 107 | + ) -> TypedTimeSeriesRangeAggregation[_T_TS_Bindable]: |
| 108 | + typed_entry = TypedTimeSeriesRangeAggregation() |
| 109 | + |
| 110 | + typed_entry.from_date = self.from_date |
| 111 | + typed_entry.to_date = self.to_date |
| 112 | + typed_entry.min = ( |
| 113 | + TimeSeriesValuesHelper.set_fields(ts_bindable_object_type, self.min, False) if self.min else None |
| 114 | + ) |
| 115 | + typed_entry.max = ( |
| 116 | + TimeSeriesValuesHelper.set_fields(ts_bindable_object_type, self.max, False) if self.max else None |
| 117 | + ) |
| 118 | + typed_entry.first = ( |
| 119 | + TimeSeriesValuesHelper.set_fields(ts_bindable_object_type, self.first, False) if self.first else None |
| 120 | + ) |
| 121 | + typed_entry.last = ( |
| 122 | + TimeSeriesValuesHelper.set_fields(ts_bindable_object_type, self.last, False) if self.last else None |
| 123 | + ) |
| 124 | + typed_entry.sum = ( |
| 125 | + TimeSeriesValuesHelper.set_fields(ts_bindable_object_type, self.sum, False) if self.sum else None |
| 126 | + ) |
| 127 | + counts = [float(count) for count in self.count] |
| 128 | + typed_entry.count = ( |
| 129 | + TimeSeriesValuesHelper.set_fields(ts_bindable_object_type, counts, False) if self.count else None |
| 130 | + ) |
| 131 | + typed_entry.average = ( |
| 132 | + TimeSeriesValuesHelper.set_fields(ts_bindable_object_type, self.average, False) if self.average else None |
| 133 | + ) |
| 134 | + |
| 135 | + return typed_entry |
| 136 | + |
| 137 | + |
| 138 | +class TypedTimeSeriesRangeAggregation(Generic[_T_TS_Bindable]): |
| 139 | + def __init__( |
| 140 | + self, |
| 141 | + count: _T_TS_Bindable = None, |
| 142 | + max: _T_TS_Bindable = None, |
| 143 | + min: _T_TS_Bindable = None, |
| 144 | + last: _T_TS_Bindable = None, |
| 145 | + first: _T_TS_Bindable = None, |
| 146 | + average: _T_TS_Bindable = None, |
| 147 | + sum: _T_TS_Bindable = None, |
| 148 | + to_date: datetime.datetime = None, |
| 149 | + from_date: datetime.datetime = None, |
| 150 | + ): |
| 151 | + self.count = count |
| 152 | + self.max = max |
| 153 | + self.min = min |
| 154 | + self.last = last |
| 155 | + self.first = first |
| 156 | + self.average = average |
| 157 | + self.sum = sum |
| 158 | + self.to_date = to_date |
| 159 | + self.from_date = from_date |
| 160 | + |
| 161 | + |
| 162 | +class TypedTimeSeriesAggregationResult(TimeSeriesQueryResult, Generic[_T_TS_Bindable]): |
| 163 | + def __init__( |
| 164 | + self, count: Optional[int] = None, results: List[TypedTimeSeriesRangeAggregation[_T_TS_Bindable]] = None |
| 165 | + ): |
| 166 | + super(TypedTimeSeriesAggregationResult, self).__init__(count) |
| 167 | + self.results = results |
| 168 | + |
| 169 | + |
| 170 | +class TimeSeriesAggregationResult(TimeSeriesQueryResult): |
| 171 | + def __init__(self, count: Optional[int] = None, results: Optional[List[TimeSeriesRangeAggregation]] = None): |
| 172 | + super().__init__(count) |
| 173 | + self.results = results |
| 174 | + |
| 175 | + def as_typed_result( |
| 176 | + self, ts_bindable_object_type: Type[_T_TS_Bindable] |
| 177 | + ) -> TypedTimeSeriesAggregationResult[_T_TS_Bindable]: |
| 178 | + result = TypedTimeSeriesAggregationResult() |
| 179 | + result.count = self.count |
| 180 | + result.results = [x.as_typed_entry(ts_bindable_object_type) for x in self.results] |
| 181 | + return result |
| 182 | + |
| 183 | + @classmethod |
| 184 | + def from_json(cls, json_dict: Dict[str, Any]) -> TimeSeriesQueryResult: |
| 185 | + json_dict = json_dict["__timeSeriesQueryFunction"] |
| 186 | + return cls( |
| 187 | + json_dict["Count"], [TimeSeriesRangeAggregation.from_json(result) for result in json_dict["Results"]] |
| 188 | + ) |
0 commit comments