|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import math |
| 4 | +from typing import TYPE_CHECKING |
| 5 | + |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +from .config_fragment import Category |
| 9 | + |
| 10 | +if TYPE_CHECKING: |
| 11 | + from .config_generation import ConfigGeneration |
| 12 | + from .config_generation import FlatConfig |
| 13 | + |
| 14 | + |
| 15 | +class ConfigEncoder: |
| 16 | + """ |
| 17 | + Encodes Helion configurations into numerical vectors for Gaussian Process models. |
| 18 | +
|
| 19 | + Handles various config types: |
| 20 | + - Power-of-2 values: log2 encoding |
| 21 | + - Integers: direct encoding with normalization |
| 22 | + - Booleans: 0/1 encoding |
| 23 | + - Enums: one-hot encoding |
| 24 | + - Permutations: inversion count encoding |
| 25 | + """ |
| 26 | + |
| 27 | + def __init__(self, config_gen: ConfigGeneration) -> None: |
| 28 | + """ |
| 29 | + Initialize the encoder with a configuration generator. |
| 30 | +
|
| 31 | + Args: |
| 32 | + config_gen: The configuration generator containing the flat spec. |
| 33 | + """ |
| 34 | + self.config_gen = config_gen |
| 35 | + self.flat_spec = config_gen.flat_spec |
| 36 | + self._compute_encoding_metadata() |
| 37 | + |
| 38 | + def _compute_encoding_metadata(self) -> None: |
| 39 | + """Precompute metadata for encoding to determine output dimensionality.""" |
| 40 | + self.encoded_dim = 0 |
| 41 | + self.encoding_map: list[tuple[int, int, str]] = [] # (start_idx, end_idx, type) |
| 42 | + |
| 43 | + for spec in self.flat_spec: |
| 44 | + category = spec.category() |
| 45 | + start_idx = self.encoded_dim |
| 46 | + |
| 47 | + if category in { |
| 48 | + Category.BLOCK_SIZE, |
| 49 | + Category.NUM_WARPS, |
| 50 | + }: |
| 51 | + # Single numerical value |
| 52 | + self.encoded_dim += 1 |
| 53 | + self.encoding_map.append((start_idx, self.encoded_dim, "numerical")) |
| 54 | + elif hasattr(spec, "choices"): |
| 55 | + # Enum - one-hot encoding |
| 56 | + num_choices = len(spec.choices) # type: ignore[no-untyped-call] |
| 57 | + self.encoded_dim += num_choices |
| 58 | + self.encoding_map.append((start_idx, self.encoded_dim, "enum")) |
| 59 | + else: |
| 60 | + # Boolean or other single value |
| 61 | + self.encoded_dim += 1 |
| 62 | + self.encoding_map.append((start_idx, self.encoded_dim, "numerical")) |
| 63 | + |
| 64 | + def encode(self, flat_config: FlatConfig) -> np.ndarray: |
| 65 | + """ |
| 66 | + Convert a flat configuration to a numerical vector. |
| 67 | +
|
| 68 | + Args: |
| 69 | + flat_config: The flat configuration values. |
| 70 | +
|
| 71 | + Returns: |
| 72 | + A numpy array suitable for GP training. |
| 73 | + """ |
| 74 | + encoded = np.zeros(self.encoded_dim, dtype=np.float64) |
| 75 | + |
| 76 | + for flat_idx, spec in enumerate(self.flat_spec): |
| 77 | + value = flat_config[flat_idx] |
| 78 | + category = spec.category() |
| 79 | + enc_start, enc_end, enc_type = self.encoding_map[flat_idx] |
| 80 | + |
| 81 | + if enc_type == "numerical": |
| 82 | + if category in {Category.BLOCK_SIZE, Category.NUM_WARPS}: |
| 83 | + # Power-of-2: use log2 encoding |
| 84 | + if isinstance(value, (int, float)) and value > 0: |
| 85 | + encoded[enc_start] = math.log2(float(value)) |
| 86 | + else: |
| 87 | + encoded[enc_start] = 0.0 |
| 88 | + else: |
| 89 | + # Other numerical: direct encoding |
| 90 | + encoded[enc_start] = ( |
| 91 | + float(value) if isinstance(value, (int, float)) else 0.0 |
| 92 | + ) |
| 93 | + elif enc_type == "enum": |
| 94 | + # One-hot encoding |
| 95 | + if hasattr(spec, "choices"): |
| 96 | + choices = spec.choices # type: ignore[attr-defined] |
| 97 | + try: |
| 98 | + choice_idx = choices.index(value) |
| 99 | + encoded[enc_start + choice_idx] = 1.0 |
| 100 | + except (ValueError, IndexError): |
| 101 | + # Default to first choice if value not found |
| 102 | + encoded[enc_start] = 1.0 |
| 103 | + |
| 104 | + return encoded |
| 105 | + |
| 106 | + def get_bounds(self) -> list[tuple[float, float]]: |
| 107 | + """ |
| 108 | + Get bounds for each encoded dimension. |
| 109 | +
|
| 110 | + Returns: |
| 111 | + List of (min, max) tuples for each dimension. |
| 112 | + """ |
| 113 | + bounds: list[tuple[float, float]] = [] |
| 114 | + |
| 115 | + for flat_idx, spec in enumerate(self.flat_spec): |
| 116 | + category = spec.category() |
| 117 | + enc_start, enc_end, enc_type = self.encoding_map[flat_idx] |
| 118 | + |
| 119 | + if enc_type == "numerical": |
| 120 | + if category in {Category.BLOCK_SIZE, Category.NUM_WARPS}: |
| 121 | + # Power-of-2: log2 bounds |
| 122 | + min_val = math.log2(float(spec.low)) # type: ignore[attr-defined] |
| 123 | + max_val = math.log2(float(spec.high)) # type: ignore[attr-defined] |
| 124 | + bounds.append((min_val, max_val)) |
| 125 | + else: |
| 126 | + # Other numerical bounds |
| 127 | + bounds.append( |
| 128 | + (float(spec.low), float(spec.high)) # type: ignore[attr-defined] |
| 129 | + ) |
| 130 | + elif enc_type == "enum": |
| 131 | + # One-hot: each dimension is 0 or 1 |
| 132 | + num_choices = enc_end - enc_start |
| 133 | + bounds.extend([(0.0, 1.0)] * num_choices) |
| 134 | + |
| 135 | + return bounds |
0 commit comments