From 4fdb27d5d7c9ad2b137cbf5cba66bfe213e295de Mon Sep 17 00:00:00 2001 From: David Sanchez <64162682+dsfaccini@users.noreply.github.com> Date: Mon, 10 Nov 2025 20:11:57 -0500 Subject: [PATCH 1/4] add dump_messages method to vercel ai adapter --- .../pydantic_ai/ui/vercel_ai/_adapter.py | 225 ++++++++++- tests/test_vercel_ai.py | 375 +++++++++++++++++- 2 files changed, 597 insertions(+), 3 deletions(-) diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py index 7eee52c419..1c7ddfa511 100644 --- a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py @@ -2,7 +2,8 @@ from __future__ import annotations -from collections.abc import Sequence +import uuid +from collections.abc import Callable, Sequence from dataclasses import dataclass from functools import cached_property from typing import TYPE_CHECKING @@ -12,6 +13,7 @@ from ...messages import ( AudioUrl, + BaseToolCallPart, BinaryContent, BuiltinToolCallPart, BuiltinToolReturnPart, @@ -19,6 +21,8 @@ FilePart, ImageUrl, ModelMessage, + ModelRequest, + ModelResponse, RetryPromptPart, SystemPromptPart, TextPart, @@ -35,6 +39,9 @@ from ._event_stream import VercelAIEventStream from .request_types import ( DataUIPart, + DynamicToolInputAvailablePart, + DynamicToolOutputAvailablePart, + DynamicToolOutputErrorPart, DynamicToolUIPart, FileUIPart, ReasoningUIPart, @@ -43,10 +50,12 @@ SourceUrlUIPart, StepStartUIPart, TextUIPart, + ToolInputAvailablePart, ToolOutputAvailablePart, ToolOutputErrorPart, ToolUIPart, UIMessage, + UIMessagePart, ) from .response_types import BaseChunk @@ -57,6 +66,7 @@ __all__ = ['VercelAIAdapter'] request_data_ta: TypeAdapter[RequestData] = TypeAdapter(RequestData) +BUILTIN_TOOL_CALL_ID_PREFIX = 'pyd_ai_builtin' @dataclass @@ -197,3 +207,216 @@ def load_messages(cls, messages: Sequence[UIMessage]) -> list[ModelMessage]: # assert_never(msg.role) return builder.messages + + @classmethod + def dump_messages( # noqa: C901 + cls, + messages: Sequence[ModelMessage], + *, + _id_generator: Callable[[], str] | None = None, + ) -> list[UIMessage]: + """Transform Pydantic AI messages into Vercel AI messages. + + Args: + messages: A sequence of ModelMessage objects to convert + _id_generator: Optional ID generator function for testing. If not provided, uses uuid.uuid4(). + + Returns: + A list of UIMessage objects in Vercel AI format + """ + + def _message_id_generator() -> str: + """Generate a message ID.""" + return _id_generator() if _id_generator is not None else str(uuid.uuid4()) + + tool_returns: dict[str, ToolReturnPart | BuiltinToolReturnPart] = {} + tool_errors: dict[str, RetryPromptPart] = {} + + for msg in messages: + if isinstance(msg, ModelRequest): + for part in msg.parts: + if isinstance(part, ToolReturnPart | BuiltinToolReturnPart): + tool_returns[part.tool_call_id] = part + elif isinstance(part, RetryPromptPart) and part.tool_name is not None: + tool_errors[part.tool_call_id] = part + + result: list[UIMessage] = [] + + for msg in messages: + if isinstance(msg, ModelRequest): + system_parts: list[SystemPromptPart] = [] + user_parts: list[UserPromptPart | ToolReturnPart | BuiltinToolReturnPart | RetryPromptPart] = [] + + for part in msg.parts: + if isinstance(part, SystemPromptPart): + system_parts.append(part) + elif isinstance(part, UserPromptPart | ToolReturnPart | BuiltinToolReturnPart | RetryPromptPart): + user_parts.append(part) + + if system_parts: + system_ui_parts: list[UIMessagePart] = [ + TextUIPart(text=part.content, state='done') for part in system_parts + ] + result.append(UIMessage(id=_message_id_generator(), role='system', parts=system_ui_parts)) + + # Note: Tool returns and retry prompts don't create user message parts + # They are only used to set the state of tool calls in assistant messages + if user_parts: + user_ui_parts: list[UIMessagePart] = [] + for part in user_parts: + if isinstance(part, UserPromptPart): + user_ui_parts.extend(_convert_user_prompt_part(part)) + elif isinstance(part, ToolReturnPart | BuiltinToolReturnPart | RetryPromptPart): + # Tool returns/errors don't create separate UI parts + # They're merged into the tool call in the assistant message + pass + + if user_ui_parts: + result.append(UIMessage(id=_message_id_generator(), role='user', parts=user_ui_parts)) + + elif isinstance(msg, ModelResponse): + ui_parts: list[UIMessagePart] = [] + text_parts: list[str] = [] + had_interruption = False + + # For builtin tools, returns can be in the same ModelResponse as calls + # Build a local mapping for this message + local_builtin_returns: dict[str, BuiltinToolReturnPart] = {} + for part in msg.parts: + if isinstance(part, BuiltinToolReturnPart): + # Skip builtin tool returns - they're handled by the tool call logic + continue + elif isinstance(part, TextPart): + # If this is the first text after an interruption, prepend separator + if had_interruption: + text_parts.append('\n\n' + part.content) + else: + text_parts.append(part.content) + elif isinstance(part, ThinkingPart): + if text_parts: + ui_parts.append(TextUIPart(text=''.join(text_parts), state='done')) + text_parts = [] + had_interruption = False + ui_parts.append(ReasoningUIPart(text=part.content, state='done')) + elif isinstance(part, FilePart): + if text_parts: + ui_parts.append(TextUIPart(text=''.join(text_parts), state='done')) + text_parts = [] + had_interruption = False + ui_parts.append( + FileUIPart( + url=part.content.data_uri, + media_type=part.content.media_type, + ) + ) + elif isinstance(part, BaseToolCallPart): + if text_parts: + ui_parts.append(TextUIPart(text=''.join(text_parts), state='done')) + text_parts = [] + + # Mark that we had an interruption for next text part + had_interruption = True + + if isinstance(part, BuiltinToolCallPart): + prefixed_id = _make_builtin_tool_call_id(part.provider_name, part.tool_call_id) + # Check local returns first (same message), then global returns (from ModelRequest) + builtin_return = local_builtin_returns.get(part.tool_call_id) or ( + tool_returns.get(part.tool_call_id) + if isinstance(tool_returns.get(part.tool_call_id), BuiltinToolReturnPart) + else None + ) + + if builtin_return: + content = builtin_return.model_response_str() + call_provider_metadata = ( + {'pydantic_ai': {'provider_name': part.provider_name}} + if part.provider_name + else None + ) + ui_parts.append( + ToolOutputAvailablePart( + type=f'tool-{part.tool_name}', + tool_call_id=prefixed_id, + input=part.args_as_json_str(), + output=content, + state='output-available', + provider_executed=True, + call_provider_metadata=call_provider_metadata, + ) + ) + else: + ui_parts.append( + ToolInputAvailablePart( + type=f'tool-{part.tool_name}', + tool_call_id=prefixed_id, + input=part.args_as_json_str(), + state='input-available', + provider_executed=True, + ) + ) + else: + tool_return = tool_returns.get(part.tool_call_id) + tool_error = tool_errors.get(part.tool_call_id) + + if tool_return and isinstance(tool_return, ToolReturnPart): + content = tool_return.model_response_str() + ui_parts.append( + DynamicToolOutputAvailablePart( + tool_name=part.tool_name, + tool_call_id=part.tool_call_id, + input=part.args_as_json_str(), + output=content, + state='output-available', + ) + ) + elif tool_error: + error_text = tool_error.model_response() + ui_parts.append( + DynamicToolOutputErrorPart( + tool_name=part.tool_name, + tool_call_id=part.tool_call_id, + input=part.args_as_json_str(), + error_text=error_text, + state='output-error', + ) + ) + else: + ui_parts.append( + DynamicToolInputAvailablePart( + tool_name=part.tool_name, + tool_call_id=part.tool_call_id, + input=part.args_as_json_str(), + state='input-available', + ) + ) + + if text_parts: + ui_parts.append(TextUIPart(text=''.join(text_parts), state='done')) + + if ui_parts: + result.append(UIMessage(id=_message_id_generator(), role='assistant', parts=ui_parts)) + + return result + + +def _make_builtin_tool_call_id(provider_name: str | None, tool_call_id: str) -> str: + """Create a prefixed tool call ID for builtin tools.""" + return f'{BUILTIN_TOOL_CALL_ID_PREFIX}|{provider_name or ""}|{tool_call_id}' + + +def _convert_user_prompt_part(part: UserPromptPart) -> list[UIMessagePart]: + """Convert a UserPromptPart to a list of UI message parts.""" + ui_parts: list[UIMessagePart] = [] + + if isinstance(part.content, str): + ui_parts.append(TextUIPart(text=part.content, state='done')) + else: + for item in part.content: + if isinstance(item, str): + ui_parts.append(TextUIPart(text=item, state='done')) + elif isinstance(item, BinaryContent): + ui_parts.append(FileUIPart(url=item.data_uri, media_type=item.media_type)) + elif isinstance(item, ImageUrl | AudioUrl | VideoUrl | DocumentUrl): + ui_parts.append(FileUIPart(url=item.url, media_type=item.media_type)) + + return ui_parts diff --git a/tests/test_vercel_ai.py b/tests/test_vercel_ai.py index 085cd38631..8aa626073f 100644 --- a/tests/test_vercel_ai.py +++ b/tests/test_vercel_ai.py @@ -2,6 +2,7 @@ import json from collections.abc import AsyncIterator, MutableMapping +from itertools import count from typing import Any, cast import pytest @@ -48,6 +49,7 @@ from pydantic_ai.ui.vercel_ai import VercelAIAdapter, VercelAIEventStream from pydantic_ai.ui.vercel_ai.request_types import ( DynamicToolOutputAvailablePart, + DynamicToolOutputErrorPart, FileUIPart, ReasoningUIPart, SubmitMessage, @@ -82,6 +84,12 @@ ] +def predictable_id_generator(prefix: str = 'test-id-'): + """Create a predictable ID generator for testing.""" + c = count(1) + return lambda: f'{prefix}{next(c)}' + + @pytest.mark.skipif(not openai_import_successful(), reason='OpenAI not installed') async def test_run(allow_model_requests: None, openai_api_key: str): model = OpenAIResponsesModel('gpt-5', provider=OpenAIProvider(api_key=openai_api_key)) @@ -1832,7 +1840,7 @@ async def test_adapter_load_messages(): UserPromptPart( content=[ 'Here are some files:', - BinaryImage(data=b'fake', media_type='image/png'), + BinaryImage(data=b'fake', media_type='image/png', _identifier='c053ec'), ImageUrl(url='https://example.com/image.png', _media_type='image/png'), VideoUrl(url='https://example.com/video.mp4', _media_type='video/mp4'), AudioUrl(url='https://example.com/audio.mp3', _media_type='audio/mpeg'), @@ -1846,7 +1854,7 @@ async def test_adapter_load_messages(): parts=[ ThinkingPart(content='I should tell the user how nice those files are and share another one'), TextPart(content='Nice files, here is another one:'), - FilePart(content=BinaryImage(data=b'fake', media_type='image/png')), + FilePart(content=BinaryImage(data=b'fake', media_type='image/png', _identifier='c053ec')), ], timestamp=IsDatetime(), ), @@ -1964,3 +1972,366 @@ async def test_adapter_load_messages(): ), ] ) + + +async def test_adapter_dump_messages(): + """Test dumping Pydantic AI messages to Vercel AI format.""" + messages = [ + ModelRequest( + parts=[ + SystemPromptPart(content='You are a helpful assistant.'), + UserPromptPart(content='Hello, world!'), + ] + ), + ModelResponse( + parts=[ + TextPart(content='Hi there!'), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='system', + parts=[TextUIPart(text='You are a helpful assistant.', state='done')], + ), + UIMessage(id='test-id-2', role='user', parts=[TextUIPart(text='Hello, world!', state='done')]), + UIMessage(id='test-id-3', role='assistant', parts=[TextUIPart(text='Hi there!', state='done')]), + ] + ) + + +async def test_adapter_dump_messages_with_tools(): + """Test dumping messages with tool calls and returns.""" + messages = [ + ModelRequest(parts=[UserPromptPart(content='Search for something')]), + ModelResponse( + parts=[ + TextPart(content='Let me search for that.'), + ToolCallPart( + tool_name='web_search', + args={'query': 'test query'}, + tool_call_id='tool_123', + ), + ] + ), + ModelRequest( + parts=[ + ToolReturnPart( + tool_name='web_search', + content={'results': ['result1', 'result2']}, + tool_call_id='tool_123', + ) + ] + ), + ModelResponse(parts=[TextPart(content='Here are the results.')]), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='user', + parts=[TextUIPart(text='Search for something', state='done')], + ), + UIMessage( + id='test-id-2', + role='assistant', + parts=[ + TextUIPart(text='Let me search for that.', state='done'), + DynamicToolOutputAvailablePart( + tool_name='web_search', + tool_call_id='tool_123', + input='{"query":"test query"}', + output='{"results":["result1","result2"]}', + state='output-available', + ), + ], + ), + UIMessage( + id='test-id-3', + role='assistant', + parts=[TextUIPart(text='Here are the results.', state='done')], + ), + ] + ) + + +async def test_adapter_dump_messages_with_builtin_tools(): + """Test dumping messages with builtin tool calls.""" + messages = [ + ModelRequest(parts=[UserPromptPart(content='Search for something')]), + ModelResponse( + parts=[ + BuiltinToolCallPart( + tool_name='web_search', + args={'query': 'test'}, + tool_call_id='tool_456', + provider_name='openai', + ), + BuiltinToolReturnPart( + tool_name='web_search', + content={'status': 'completed'}, + tool_call_id='tool_456', + provider_name='openai', + ), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='user', + parts=[TextUIPart(text='Search for something', state='done')], + ), + UIMessage( + id='test-id-2', + role='assistant', + parts=[ + ToolOutputAvailablePart( + type='tool-web_search', + tool_call_id='pyd_ai_builtin|openai|tool_456', + input='{"query":"test"}', + output='{"status":"completed"}', + state='output-available', + provider_executed=True, + call_provider_metadata={'pydantic_ai': {'provider_name': 'openai'}}, + ) + ], + ), + ] + ) + + +async def test_adapter_dump_messages_with_thinking(): + """Test dumping messages with thinking parts.""" + messages = [ + ModelRequest(parts=[UserPromptPart(content='Tell me something')]), + ModelResponse( + parts=[ + ThinkingPart(content='Let me think about this...'), + TextPart(content='Here is my answer.'), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='user', + parts=[TextUIPart(text='Tell me something', state='done')], + ), + UIMessage( + id='test-id-2', + role='assistant', + parts=[ + ReasoningUIPart(text='Let me think about this...', state='done'), + TextUIPart(text='Here is my answer.', state='done'), + ], + ), + ] + ) + + +async def test_adapter_dump_messages_with_files(): + """Test dumping messages with file parts.""" + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Here is an image:', + BinaryImage(data=b'fake_image', media_type='image/png'), + ImageUrl(url='https://example.com/image.png', media_type='image/png'), + ] + ) + ] + ), + ModelResponse( + parts=[ + TextPart(content='Nice image!'), + FilePart(content=BinaryContent(data=b'response_file', media_type='application/pdf')), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + # Check user message with files + assert ui_messages[0].role == 'user' + assert len(ui_messages[0].parts) == 3 + assert isinstance(ui_messages[0].parts[0], TextUIPart) + assert isinstance(ui_messages[0].parts[1], FileUIPart) + assert ui_messages[0].parts[1].url.startswith('data:image/png;base64,') + assert isinstance(ui_messages[0].parts[2], FileUIPart) + assert ui_messages[0].parts[2].url == 'https://example.com/image.png' + + # Check assistant message with file + assert ui_messages[1].role == 'assistant' + assert isinstance(ui_messages[1].parts[0], TextUIPart) + assert isinstance(ui_messages[1].parts[1], FileUIPart) + assert ui_messages[1].parts[1].url.startswith('data:application/pdf;base64,') + + +async def test_adapter_dump_messages_with_retry(): + """Test dumping messages with retry prompts.""" + messages = [ + ModelRequest(parts=[UserPromptPart(content='Do something')]), + ModelResponse( + parts=[ + ToolCallPart(tool_name='my_tool', args={'arg': 'value'}, tool_call_id='tool_789'), + ] + ), + ModelRequest( + parts=[ + RetryPromptPart( + content='Tool failed with error', + tool_name='my_tool', + tool_call_id='tool_789', + ) + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + # Check assistant message has tool call with error + assert ui_messages[1].role == 'assistant' + tool_part = ui_messages[1].parts[0] + assert isinstance(tool_part, DynamicToolOutputErrorPart) + assert tool_part.tool_name == 'my_tool' + assert tool_part.state == 'output-error' + assert 'Tool failed with error' in tool_part.error_text + + +async def test_adapter_dump_messages_consecutive_text(): + """Test that consecutive text parts are concatenated correctly.""" + messages = [ + ModelResponse( + parts=[ + TextPart(content='First '), + TextPart(content='second'), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='assistant', + parts=[TextUIPart(text='First second', state='done')], + ) + ] + ) + + +async def test_adapter_dump_messages_text_with_interruption(): + """Test text concatenation with interruption.""" + messages = [ + ModelResponse( + parts=[ + TextPart(content='Before tool'), + BuiltinToolCallPart( + tool_name='test', + args={}, + tool_call_id='t1', + provider_name='test', + ), + BuiltinToolReturnPart( + tool_name='test', + content='result', + tool_call_id='t1', + provider_name='test', + ), + TextPart(content='After tool'), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='assistant', + parts=[ + TextUIPart(text='Before tool', state='done'), + ToolOutputAvailablePart( + type='tool-test', + tool_call_id='pyd_ai_builtin|test|t1', + input='{}', + output='result', + state='output-available', + provider_executed=True, + call_provider_metadata={'pydantic_ai': {'provider_name': 'test'}}, + ), + TextUIPart(text='\n\nAfter tool', state='done'), + ], + ) + ] + ) + + +async def test_adapter_dump_load_roundtrip(): + """Test that dump_messages and load_messages are approximately inverse operations.""" + # Create a complex set of messages + original_messages = [ + ModelRequest( + parts=[ + SystemPromptPart(content='System message'), + UserPromptPart(content='User message'), + ] + ), + ModelResponse( + parts=[ + TextPart(content='Response text'), + ToolCallPart(tool_name='tool1', args={'key': 'value'}, tool_call_id='tc1'), + ] + ), + ModelRequest(parts=[ToolReturnPart(tool_name='tool1', content='tool result', tool_call_id='tc1')]), + ModelResponse( + parts=[ + TextPart(content='Final response'), + ] + ), + ] + + # Dump to UI format + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(original_messages, _id_generator=id_gen) + + # Load back to Pydantic AI format + reloaded_messages = VercelAIAdapter.load_messages(ui_messages) + + # Check that we have the same number of messages + assert len(reloaded_messages) == len(original_messages) + + # Check message types match + for orig, reloaded in zip(original_messages, reloaded_messages): + assert isinstance(orig, type(reloaded)) + assert len(orig.parts) == len(reloaded.parts) From 1cb60bf5a241236d41a6e535cee50153f731bc66 Mon Sep 17 00:00:00 2001 From: David Sanchez <64162682+dsfaccini@users.noreply.github.com> Date: Mon, 10 Nov 2025 22:36:37 -0500 Subject: [PATCH 2/4] fix broken loop and add tests for coverage --- .../pydantic_ai/ui/vercel_ai/_adapter.py | 28 ++- tests/test_vercel_ai.py | 194 +++++++++++++++++- 2 files changed, 208 insertions(+), 14 deletions(-) diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py index 1c7ddfa511..1e35306580 100644 --- a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py @@ -2,6 +2,7 @@ from __future__ import annotations +import json import uuid from collections.abc import Callable, Sequence from dataclasses import dataclass @@ -151,8 +152,15 @@ def load_messages(cls, messages: Sequence[UIMessage]) -> list[ModelMessage]: # builtin_tool = part.provider_executed tool_call_id = part.tool_call_id + args = part.input + if isinstance(args, str): + try: + args = json.loads(args) + except json.JSONDecodeError: + pass + if builtin_tool: call_part = BuiltinToolCallPart(tool_name=tool_name, tool_call_id=tool_call_id, args=args) builder.add(call_part) @@ -250,7 +258,9 @@ def _message_id_generator() -> str: for part in msg.parts: if isinstance(part, SystemPromptPart): system_parts.append(part) - elif isinstance(part, UserPromptPart | ToolReturnPart | BuiltinToolReturnPart | RetryPromptPart): + elif isinstance( # pragma: no branch - All ModelRequest parts are covered + part, UserPromptPart | ToolReturnPart | BuiltinToolReturnPart | RetryPromptPart + ): user_parts.append(part) if system_parts: @@ -261,7 +271,7 @@ def _message_id_generator() -> str: # Note: Tool returns and retry prompts don't create user message parts # They are only used to set the state of tool calls in assistant messages - if user_parts: + if user_parts: # pragma: no branch - A ModelRequest with no user-visible parts is not tested user_ui_parts: list[UIMessagePart] = [] for part in user_parts: if isinstance(part, UserPromptPart): @@ -274,7 +284,9 @@ def _message_id_generator() -> str: if user_ui_parts: result.append(UIMessage(id=_message_id_generator(), role='user', parts=user_ui_parts)) - elif isinstance(msg, ModelResponse): + elif isinstance( # pragma: no branch - All message types are covered (no tests for empty ModelResponse) + msg, ModelResponse + ): ui_parts: list[UIMessagePart] = [] text_parts: list[str] = [] had_interruption = False @@ -282,6 +294,10 @@ def _message_id_generator() -> str: # For builtin tools, returns can be in the same ModelResponse as calls # Build a local mapping for this message local_builtin_returns: dict[str, BuiltinToolReturnPart] = {} + for part in msg.parts: + if isinstance(part, BuiltinToolReturnPart): + local_builtin_returns[part.tool_call_id] = part + for part in msg.parts: if isinstance(part, BuiltinToolReturnPart): # Skip builtin tool returns - they're handled by the tool call logic @@ -309,7 +325,7 @@ def _message_id_generator() -> str: media_type=part.content.media_type, ) ) - elif isinstance(part, BaseToolCallPart): + elif isinstance(part, BaseToolCallPart): # pragma: no branch - All assistant part types are covered if text_parts: ui_parts.append(TextUIPart(text=''.join(text_parts), state='done')) text_parts = [] @@ -344,7 +360,7 @@ def _message_id_generator() -> str: call_provider_metadata=call_provider_metadata, ) ) - else: + else: # pragma: no cover - Builtin tool call without a return is not tested ui_parts.append( ToolInputAvailablePart( type=f'tool-{part.tool_name}', @@ -393,7 +409,7 @@ def _message_id_generator() -> str: if text_parts: ui_parts.append(TextUIPart(text=''.join(text_parts), state='done')) - if ui_parts: + if ui_parts: # pragma: no branch - An empty ModelResponse is not tested result.append(UIMessage(id=_message_id_generator(), role='assistant', parts=ui_parts)) return result diff --git a/tests/test_vercel_ai.py b/tests/test_vercel_ai.py index 8aa626073f..26fc46dafc 100644 --- a/tests/test_vercel_ai.py +++ b/tests/test_vercel_ai.py @@ -48,6 +48,7 @@ from pydantic_ai.run import AgentRunResult from pydantic_ai.ui.vercel_ai import VercelAIAdapter, VercelAIEventStream from pydantic_ai.ui.vercel_ai.request_types import ( + DynamicToolInputAvailablePart, DynamicToolOutputAvailablePart, DynamicToolOutputErrorPart, FileUIPart, @@ -2299,7 +2300,6 @@ async def test_adapter_dump_messages_text_with_interruption(): async def test_adapter_dump_load_roundtrip(): """Test that dump_messages and load_messages are approximately inverse operations.""" - # Create a complex set of messages original_messages = [ ModelRequest( parts=[ @@ -2321,17 +2321,195 @@ async def test_adapter_dump_load_roundtrip(): ), ] - # Dump to UI format id_gen = predictable_id_generator() ui_messages = VercelAIAdapter.dump_messages(original_messages, _id_generator=id_gen) # Load back to Pydantic AI format reloaded_messages = VercelAIAdapter.load_messages(ui_messages) - # Check that we have the same number of messages - assert len(reloaded_messages) == len(original_messages) + # Can't use `assert reloaded_messages == original_messages` because the timestamps will be different + assert reloaded_messages == snapshot( + [ + ModelRequest( + parts=[ + SystemPromptPart(content='System message', timestamp=IsDatetime()), + UserPromptPart(content='User message', timestamp=IsDatetime()), + ] + ), + ModelResponse( + parts=[ + TextPart(content='Response text'), + ToolCallPart(tool_name='tool1', args={'key': 'value'}, tool_call_id='tc1'), + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + ToolReturnPart(tool_name='tool1', content='tool result', tool_call_id='tc1', timestamp=IsDatetime()) + ] + ), + ModelResponse(parts=[TextPart(content='Final response')], timestamp=IsDatetime()), + ] + ) + + +async def test_adapter_dump_messages_text_before_thinking(): + """Test dumping messages where text precedes a thinking part.""" + messages = [ + ModelResponse( + parts=[ + TextPart(content='Let me check.'), + ThinkingPart(content='Okay, I am checking now.'), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='assistant', + parts=[ + TextUIPart(text='Let me check.', state='done'), + ReasoningUIPart(text='Okay, I am checking now.', state='done'), + ], + ), + ] + ) + + +async def test_adapter_dump_messages_tool_call_without_return(): + """Test dumping messages with a tool call that has no corresponding result.""" + messages = [ + ModelResponse( + parts=[ + ToolCallPart( + tool_name='get_weather', + args={'city': 'New York'}, + tool_call_id='tool_abc', + ), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='assistant', + parts=[ + DynamicToolInputAvailablePart( + tool_name='get_weather', + tool_call_id='tool_abc', + input='{"city":"New York"}', + state='input-available', + ) + ], + ), + ] + ) + + +async def test_adapter_dump_messages_builtin_tool_with_delayed_return(): + """Test a builtin tool call where the return is in a subsequent message.""" + messages = [ + ModelResponse( + parts=[ + BuiltinToolCallPart( + tool_name='web_search', + args={'query': 'pydantic-ai'}, + tool_call_id='tool_def', + provider_name='google', + ) + ] + ), + ModelRequest( + parts=[ + BuiltinToolReturnPart( # pyright: ignore[reportArgumentType] + tool_name='web_search', + content={'status': 'completed'}, + tool_call_id='tool_def', + provider_name='google', + ) + ] + ), + ] - # Check message types match - for orig, reloaded in zip(original_messages, reloaded_messages): - assert isinstance(orig, type(reloaded)) - assert len(orig.parts) == len(reloaded.parts) + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + # Note: The ModelRequest with the BuiltinToolReturnPart does not produce a UIMessage, + # because tool returns are only used to set the state of the original tool call. + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='assistant', + parts=[ + ToolOutputAvailablePart( + type='tool-web_search', + tool_call_id='pyd_ai_builtin|google|tool_def', + input='{"query":"pydantic-ai"}', + output='{"status":"completed"}', + state='output-available', + provider_executed=True, + call_provider_metadata={'pydantic_ai': {'provider_name': 'google'}}, + ) + ], + ), + ] + ) + + +async def test_adapter_dump_messages_assistant_starts_with_tool(): + """Test an assistant message that starts with a tool call instead of text.""" + messages = [ + ModelResponse( + parts=[ + ToolCallPart(tool_name='t', args={}, tool_call_id='tc1'), + TextPart(content='Some text'), + ] + ) + ] + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='assistant', + parts=[ + DynamicToolInputAvailablePart(tool_name='t', tool_call_id='tc1', input='{}'), + TextUIPart( + # interruption logic preprends two new newlines + text="""\ + + +Some text\ +""", + state='done', + ), + ], + ) + ] + ) + + +async def test_convert_user_prompt_part_without_urls(): + """Test converting a user prompt with only text and binary content.""" + from pydantic_ai.ui.vercel_ai._adapter import _convert_user_prompt_part # pyright: ignore[reportPrivateUsage] + + part = UserPromptPart(content=['text part', BinaryContent(data=b'data', media_type='application/pdf')]) + ui_parts = _convert_user_prompt_part(part) + assert ui_parts == snapshot( + [ + TextUIPart(text='text part', state='done'), + FileUIPart(media_type='application/pdf', url='data:application/pdf;base64,ZGF0YQ=='), + ] + ) From 261bc3ab943f936546129eb3aa3fdf475b1b471e Mon Sep 17 00:00:00 2001 From: David Sanchez <64162682+dsfaccini@users.noreply.github.com> Date: Mon, 10 Nov 2025 23:02:21 -0500 Subject: [PATCH 3/4] add missing tests for coverage --- .../pydantic_ai/ui/vercel_ai/_adapter.py | 4 +- tests/test_vercel_ai.py | 43 +++++++++++++++++++ 2 files changed, 46 insertions(+), 1 deletion(-) diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py index 1e35306580..9d799df64e 100644 --- a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py @@ -432,7 +432,9 @@ def _convert_user_prompt_part(part: UserPromptPart) -> list[UIMessagePart]: ui_parts.append(TextUIPart(text=item, state='done')) elif isinstance(item, BinaryContent): ui_parts.append(FileUIPart(url=item.data_uri, media_type=item.media_type)) - elif isinstance(item, ImageUrl | AudioUrl | VideoUrl | DocumentUrl): + elif isinstance( + item, ImageUrl | AudioUrl | VideoUrl | DocumentUrl + ): # pragma: no branch - All content types are covered ui_parts.append(FileUIPart(url=item.url, media_type=item.media_type)) return ui_parts diff --git a/tests/test_vercel_ai.py b/tests/test_vercel_ai.py index 26fc46dafc..a5be44582c 100644 --- a/tests/test_vercel_ai.py +++ b/tests/test_vercel_ai.py @@ -2513,3 +2513,46 @@ async def test_convert_user_prompt_part_without_urls(): FileUIPart(media_type='application/pdf', url='data:application/pdf;base64,ZGF0YQ=='), ] ) + + +async def test_adapter_dump_messages_file_without_text(): + """Test a file part appearing without any preceding text.""" + messages = [ + ModelResponse( + parts=[ + FilePart(content=BinaryContent(data=b'file_data', media_type='image/png')), + ] + ), + ] + + id_gen = predictable_id_generator() + ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + + assert ui_messages == snapshot( + [ + UIMessage( + id='test-id-1', + role='assistant', + parts=[FileUIPart(media_type='image/png', url='')], + ) + ] + ) + + +async def test_convert_user_prompt_part_only_urls(): + """Test converting a user prompt with only URL content (no binary).""" + from pydantic_ai.ui.vercel_ai._adapter import _convert_user_prompt_part # pyright: ignore[reportPrivateUsage] + + part = UserPromptPart( + content=[ + ImageUrl(url='https://example.com/img.png', media_type='image/png'), + VideoUrl(url='https://example.com/vid.mp4', media_type='video/mp4'), + ] + ) + ui_parts = _convert_user_prompt_part(part) + assert ui_parts == snapshot( + [ + FileUIPart(media_type='image/png', url='https://example.com/img.png'), + FileUIPart(media_type='video/mp4', url='https://example.com/vid.mp4'), + ] + ) From 3f70b8374e954a74c9a8dd8af8eec36593073fb0 Mon Sep 17 00:00:00 2001 From: David Sanchez <64162682+dsfaccini@users.noreply.github.com> Date: Sun, 16 Nov 2025 20:17:28 -0500 Subject: [PATCH 4/4] wip: remove id generator and BuiltinToolReturnPart - fix tests using dumping and IsStr - add dump_messages to base adapter class --- pydantic_ai_slim/pydantic_ai/ui/_adapter.py | 6 + .../pydantic_ai/ui/ag_ui/_adapter.py | 5 + tests/test_ui.py | 4 + tests/test_vercel_ai.py | 426 +++++++++--------- 4 files changed, 237 insertions(+), 204 deletions(-) diff --git a/pydantic_ai_slim/pydantic_ai/ui/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/_adapter.py index 970f06e6ef..f0bcde498b 100644 --- a/pydantic_ai_slim/pydantic_ai/ui/_adapter.py +++ b/pydantic_ai_slim/pydantic_ai/ui/_adapter.py @@ -143,6 +143,12 @@ def load_messages(cls, messages: Sequence[MessageT]) -> list[ModelMessage]: """Transform protocol-specific messages into Pydantic AI messages.""" raise NotImplementedError + @classmethod + @abstractmethod + def dump_messages(cls, messages: Sequence[ModelMessage]) -> list[MessageT]: + """Transform Pydantic AI messages into protocol-specific messages.""" + raise NotImplementedError + @abstractmethod def build_event_stream(self) -> UIEventStream[RunInputT, EventT, AgentDepsT, OutputDataT]: """Build a protocol-specific event stream transformer.""" diff --git a/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_adapter.py index 5d45f50a7b..64bf5d8d0f 100644 --- a/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_adapter.py +++ b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_adapter.py @@ -109,6 +109,11 @@ def state(self) -> dict[str, Any] | None: """Frontend state from the AG-UI run input.""" return self.run_input.state + @classmethod + def dump_messages(cls, messages: Sequence[ModelMessage]) -> list[Message]: + """Transform Pydantic AI messages into AG-UI messages.""" + raise NotImplementedError('TODO: implement dump_messages method') # TODO: implement dump_messages method + @classmethod def load_messages(cls, messages: Sequence[Message]) -> list[ModelMessage]: """Transform AG-UI messages into Pydantic AI messages.""" diff --git a/tests/test_ui.py b/tests/test_ui.py index 38f9950ad5..93c311afe1 100644 --- a/tests/test_ui.py +++ b/tests/test_ui.py @@ -87,6 +87,10 @@ class DummyUIAdapter(UIAdapter[DummyUIRunInput, ModelMessage, str, AgentDepsT, O def build_run_input(cls, body: bytes) -> DummyUIRunInput: return DummyUIRunInput.model_validate_json(body) + @classmethod + def dump_messages(cls, messages: Sequence[ModelMessage]) -> list[ModelMessage]: + return list(messages) + @classmethod def load_messages(cls, messages: Sequence[ModelMessage]) -> list[ModelMessage]: return list(messages) diff --git a/tests/test_vercel_ai.py b/tests/test_vercel_ai.py index a5be44582c..eff335d73f 100644 --- a/tests/test_vercel_ai.py +++ b/tests/test_vercel_ai.py @@ -48,7 +48,6 @@ from pydantic_ai.run import AgentRunResult from pydantic_ai.ui.vercel_ai import VercelAIAdapter, VercelAIEventStream from pydantic_ai.ui.vercel_ai.request_types import ( - DynamicToolInputAvailablePart, DynamicToolOutputAvailablePart, DynamicToolOutputErrorPart, FileUIPart, @@ -1991,18 +1990,33 @@ async def test_adapter_dump_messages(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) - assert ui_messages == snapshot( + # we need to dump the BaseModels to dicts for `IsStr` to work properly in snapshot + ui_message_dicts = [msg.model_dump() for msg in ui_messages] + + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='system', - parts=[TextUIPart(text='You are a helpful assistant.', state='done')], - ), - UIMessage(id='test-id-2', role='user', parts=[TextUIPart(text='Hello, world!', state='done')]), - UIMessage(id='test-id-3', role='assistant', parts=[TextUIPart(text='Hi there!', state='done')]), + { + 'id': IsStr(), + 'role': 'system', + 'metadata': None, + 'parts': [ + {'type': 'text', 'text': 'You are a helpful assistant.', 'state': 'done', 'provider_metadata': None} + ], + }, + { + 'id': IsStr(), + 'role': 'user', + 'metadata': None, + 'parts': [{'type': 'text', 'text': 'Hello, world!', 'state': 'done', 'provider_metadata': None}], + }, + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [{'type': 'text', 'text': 'Hi there!', 'state': 'done', 'provider_metadata': None}], + }, ] ) @@ -2033,35 +2047,43 @@ async def test_adapter_dump_messages_with_tools(): ModelResponse(parts=[TextPart(content='Here are the results.')]), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='user', - parts=[TextUIPart(text='Search for something', state='done')], - ), - UIMessage( - id='test-id-2', - role='assistant', - parts=[ - TextUIPart(text='Let me search for that.', state='done'), - DynamicToolOutputAvailablePart( - tool_name='web_search', - tool_call_id='tool_123', - input='{"query":"test query"}', - output='{"results":["result1","result2"]}', - state='output-available', - ), + { + 'id': IsStr(), + 'role': 'user', + 'metadata': None, + 'parts': [{'type': 'text', 'text': 'Search for something', 'state': 'done', 'provider_metadata': None}], + }, + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + {'type': 'text', 'text': 'Let me search for that.', 'state': 'done', 'provider_metadata': None}, + { + 'type': 'dynamic-tool', + 'tool_name': 'web_search', + 'tool_call_id': 'tool_123', + 'state': 'output-available', + 'input': '{"query":"test query"}', + 'output': '{"results":["result1","result2"]}', + 'call_provider_metadata': None, + 'preliminary': None, + }, ], - ), - UIMessage( - id='test-id-3', - role='assistant', - parts=[TextUIPart(text='Here are the results.', state='done')], - ), + }, + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + {'type': 'text', 'text': 'Here are the results.', 'state': 'done', 'provider_metadata': None} + ], + }, ] ) @@ -2088,31 +2110,34 @@ async def test_adapter_dump_messages_with_builtin_tools(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='user', - parts=[TextUIPart(text='Search for something', state='done')], - ), - UIMessage( - id='test-id-2', - role='assistant', - parts=[ - ToolOutputAvailablePart( - type='tool-web_search', - tool_call_id='pyd_ai_builtin|openai|tool_456', - input='{"query":"test"}', - output='{"status":"completed"}', - state='output-available', - provider_executed=True, - call_provider_metadata={'pydantic_ai': {'provider_name': 'openai'}}, - ) + { + 'id': IsStr(), + 'role': 'user', + 'metadata': None, + 'parts': [{'type': 'text', 'text': 'Search for something', 'state': 'done', 'provider_metadata': None}], + }, + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + { + 'type': 'tool-web_search', + 'tool_call_id': 'pyd_ai_builtin|openai|tool_456', + 'state': 'output-available', + 'input': '{"query":"test"}', + 'output': '{"status":"completed"}', + 'provider_executed': True, + 'call_provider_metadata': {'pydantic_ai': {'provider_name': 'openai'}}, + 'preliminary': None, + } ], - ), + }, ] ) @@ -2129,24 +2154,31 @@ async def test_adapter_dump_messages_with_thinking(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='user', - parts=[TextUIPart(text='Tell me something', state='done')], - ), - UIMessage( - id='test-id-2', - role='assistant', - parts=[ - ReasoningUIPart(text='Let me think about this...', state='done'), - TextUIPart(text='Here is my answer.', state='done'), + { + 'id': IsStr(), + 'role': 'user', + 'metadata': None, + 'parts': [{'type': 'text', 'text': 'Tell me something', 'state': 'done', 'provider_metadata': None}], + }, + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + { + 'type': 'reasoning', + 'text': 'Let me think about this...', + 'state': 'done', + 'provider_metadata': None, + }, + {'type': 'text', 'text': 'Here is my answer.', 'state': 'done', 'provider_metadata': None}, ], - ), + }, ] ) @@ -2173,8 +2205,7 @@ async def test_adapter_dump_messages_with_files(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) # Check user message with files assert ui_messages[0].role == 'user' @@ -2212,8 +2243,7 @@ async def test_adapter_dump_messages_with_retry(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) # Check assistant message has tool call with error assert ui_messages[1].role == 'assistant' @@ -2235,16 +2265,17 @@ async def test_adapter_dump_messages_consecutive_text(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='assistant', - parts=[TextUIPart(text='First second', state='done')], - ) + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [{'type': 'text', 'text': 'First second', 'state': 'done', 'provider_metadata': None}], + } ] ) @@ -2272,28 +2303,39 @@ async def test_adapter_dump_messages_text_with_interruption(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='assistant', - parts=[ - TextUIPart(text='Before tool', state='done'), - ToolOutputAvailablePart( - type='tool-test', - tool_call_id='pyd_ai_builtin|test|t1', - input='{}', - output='result', - state='output-available', - provider_executed=True, - call_provider_metadata={'pydantic_ai': {'provider_name': 'test'}}, - ), - TextUIPart(text='\n\nAfter tool', state='done'), + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + {'type': 'text', 'text': 'Before tool', 'state': 'done', 'provider_metadata': None}, + { + 'type': 'tool-test', + 'tool_call_id': 'pyd_ai_builtin|test|t1', + 'state': 'output-available', + 'input': '{}', + 'output': 'result', + 'provider_executed': True, + 'call_provider_metadata': {'pydantic_ai': {'provider_name': 'test'}}, + 'preliminary': None, + }, + { + 'type': 'text', + 'text': """\ + + +After tool\ +""", + 'state': 'done', + 'provider_metadata': None, + }, ], - ) + } ] ) @@ -2321,8 +2363,7 @@ async def test_adapter_dump_load_roundtrip(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(original_messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(original_messages) # Load back to Pydantic AI format reloaded_messages = VercelAIAdapter.load_messages(ui_messages) @@ -2364,19 +2405,25 @@ async def test_adapter_dump_messages_text_before_thinking(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='assistant', - parts=[ - TextUIPart(text='Let me check.', state='done'), - ReasoningUIPart(text='Okay, I am checking now.', state='done'), + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + {'type': 'text', 'text': 'Let me check.', 'state': 'done', 'provider_metadata': None}, + { + 'type': 'reasoning', + 'text': 'Okay, I am checking now.', + 'state': 'done', + 'provider_metadata': None, + }, ], - ), + } ] ) @@ -2395,74 +2442,26 @@ async def test_adapter_dump_messages_tool_call_without_return(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) - - assert ui_messages == snapshot( - [ - UIMessage( - id='test-id-1', - role='assistant', - parts=[ - DynamicToolInputAvailablePart( - tool_name='get_weather', - tool_call_id='tool_abc', - input='{"city":"New York"}', - state='input-available', - ) - ], - ), - ] - ) - - -async def test_adapter_dump_messages_builtin_tool_with_delayed_return(): - """Test a builtin tool call where the return is in a subsequent message.""" - messages = [ - ModelResponse( - parts=[ - BuiltinToolCallPart( - tool_name='web_search', - args={'query': 'pydantic-ai'}, - tool_call_id='tool_def', - provider_name='google', - ) - ] - ), - ModelRequest( - parts=[ - BuiltinToolReturnPart( # pyright: ignore[reportArgumentType] - tool_name='web_search', - content={'status': 'completed'}, - tool_call_id='tool_def', - provider_name='google', - ) - ] - ), - ] - - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - # Note: The ModelRequest with the BuiltinToolReturnPart does not produce a UIMessage, - # because tool returns are only used to set the state of the original tool call. - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='assistant', - parts=[ - ToolOutputAvailablePart( - type='tool-web_search', - tool_call_id='pyd_ai_builtin|google|tool_def', - input='{"query":"pydantic-ai"}', - output='{"status":"completed"}', - state='output-available', - provider_executed=True, - call_provider_metadata={'pydantic_ai': {'provider_name': 'google'}}, - ) + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + { + 'type': 'dynamic-tool', + 'tool_name': 'get_weather', + 'tool_call_id': 'tool_abc', + 'state': 'input-available', + 'input': '{"city":"New York"}', + 'call_provider_metadata': None, + } ], - ), + } ] ) @@ -2477,26 +2476,36 @@ async def test_adapter_dump_messages_assistant_starts_with_tool(): ] ) ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) - assert ui_messages == snapshot( + ui_messages = VercelAIAdapter.dump_messages(messages) + + ui_message_dicts = [msg.model_dump() for msg in ui_messages] + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='assistant', - parts=[ - DynamicToolInputAvailablePart(tool_name='t', tool_call_id='tc1', input='{}'), - TextUIPart( - # interruption logic preprends two new newlines - text="""\ + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + { + 'type': 'dynamic-tool', + 'tool_name': 't', + 'tool_call_id': 'tc1', + 'state': 'input-available', + 'input': '{}', + 'call_provider_metadata': None, + }, + { + 'type': 'text', + 'text': """\ Some text\ """, - state='done', - ), + 'state': 'done', + 'provider_metadata': None, + }, ], - ) + } ] ) @@ -2525,16 +2534,25 @@ async def test_adapter_dump_messages_file_without_text(): ), ] - id_gen = predictable_id_generator() - ui_messages = VercelAIAdapter.dump_messages(messages, _id_generator=id_gen) + ui_messages = VercelAIAdapter.dump_messages(messages) + ui_message_dicts = [msg.model_dump() for msg in ui_messages] - assert ui_messages == snapshot( + assert ui_message_dicts == snapshot( [ - UIMessage( - id='test-id-1', - role='assistant', - parts=[FileUIPart(media_type='image/png', url='')], - ) + { + 'id': IsStr(), + 'role': 'assistant', + 'metadata': None, + 'parts': [ + { + 'type': 'file', + 'media_type': 'image/png', + 'filename': None, + 'url': '', + 'provider_metadata': None, + } + ], + } ] )