Skip to content

Commit a299134

Browse files
committed
Modify documentation examples to avoid warnings
Signed-off-by: Keith Battocchi <kebatt@microsoft.com>
1 parent 1348e65 commit a299134

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

doc/spec/estimation/dml.rst

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -52,11 +52,11 @@ characteristics :math:`X` of the treated samples, then one can use this method.
5252

5353
# DML
5454
import numpy as np
55-
X = np.random.choice(np.arange(5), size=(100,3))
55+
X = np.random.choice(6, size=(100,3))
5656
Y = np.random.normal(size=(100,2))
5757
y = np.random.normal(size=(100,))
58-
T = T0 = T1 = np.random.choice(np.arange(3), size=(100,2))
59-
t = t0 = t1 = T[:,0]
58+
(T, T0, T1) = (np.random.choice(np.arange(3), size=(100,2)) for _ in range(3))
59+
(t, t0, t1) = (a[:,0] for a in (T, T0, T1))
6060
W = np.random.normal(size=(100,2))
6161

6262
.. testcode::
@@ -646,7 +646,7 @@ Then we can estimate the coefficients :math:`\alpha_i` by running:
646646
from sklearn.preprocessing import PolynomialFeatures
647647
est = LinearDML(model_y=RandomForestRegressor(),
648648
model_t=RandomForestRegressor(),
649-
featurizer=PolynomialFeatures(degree=3, include_bias=True))
649+
featurizer=PolynomialFeatures(degree=3, include_bias=False))
650650
est.fit(y, T, X=X, W=W)
651651

652652
# To get the coefficients of the polynomial fitted in the final stage we can
@@ -663,7 +663,7 @@ To add fixed effect heterogeneity, we can create one-hot encodings of the id, wh
663663
from econml.dml import LinearDML
664664
from sklearn.preprocessing import OneHotEncoder
665665
# removing one id to avoid colinearity, as is standard for fixed effects
666-
X_oh = OneHotEncoder(sparse_output=False).fit_transform(X)[:, 1:]
666+
X_oh = OneHotEncoder(sparse_output=False, drop="first").fit_transform(X)
667667

668668
est = LinearDML(model_y=RandomForestRegressor(),
669669
model_t=RandomForestRegressor())
@@ -703,7 +703,7 @@ We can even create a Pipeline or Union of featurizers that will apply multiply f
703703
est = LinearDML(model_y=RandomForestRegressor(),
704704
model_t=RandomForestRegressor(),
705705
featurizer=Pipeline([('log', LogFeatures()),
706-
('poly', PolynomialFeatures(degree=2))]))
706+
('poly', PolynomialFeatures(degree=2, include_bias=False))]))
707707
est.fit(y, T, X=X, W=W)
708708

709709

0 commit comments

Comments
 (0)