|
| 1 | +""" |
| 2 | +Implementation of SARSA semi-gradient algorithm. |
| 3 | +Initial implementation is inspired from |
| 4 | +https://michaeloneill.github.io/RL-tutorial.html |
| 5 | +""" |
| 6 | +import numpy as np |
| 7 | +from typing import TypeVar |
| 8 | + |
| 9 | +from src.utils.mixins import WithMaxActionMixin, WithQTableMixinBase |
| 10 | +from src.algorithms.q_estimator import QEstimator |
| 11 | +from src.exceptions.exceptions import InvalidParamValue |
| 12 | + |
| 13 | +Env = TypeVar('Env') |
| 14 | +Criterion = TypeVar('Criterion') |
| 15 | +Policy = TypeVar('Policy') |
| 16 | +Estimator = TypeVar('Estimator') |
| 17 | + |
| 18 | + |
| 19 | +class SARSAnConfig: |
| 20 | + |
| 21 | + def __init__(self) -> None: |
| 22 | + self.gamma: float = 1.0 |
| 23 | + self.alpha = 0.1 |
| 24 | + self.n = 10 |
| 25 | + self.n_itrs_per_episode: int = 100 |
| 26 | + self.max_size: int = 4096 |
| 27 | + self.use_trace: bool = False |
| 28 | + self.policy: Policy = None |
| 29 | + self.estimator: Estimator = None |
| 30 | + self.reset_estimator_z_traces: bool = False |
| 31 | + |
| 32 | + |
| 33 | +class SARSAn(WithMaxActionMixin): |
| 34 | + """ |
| 35 | + Implementation ofn-step semi-gradient SARSA algorithm |
| 36 | + """ |
| 37 | + |
| 38 | + def __init__(self, sarsa_config: SARSAnConfig): |
| 39 | + |
| 40 | + self.name = "SARSAn" |
| 41 | + self.config = sarsa_config |
| 42 | + self.q_table = {} |
| 43 | + |
| 44 | + def play(self, env: Env, stop_criterion: Criterion) -> None: |
| 45 | + pass |
| 46 | + |
| 47 | + def actions_before_training(self, env: Env) -> None: |
| 48 | + """ |
| 49 | + Any action to execute before |
| 50 | + entering the training loop |
| 51 | + :param env: |
| 52 | + :return: |
| 53 | + """ |
| 54 | + |
| 55 | + is_tiled = getattr(env, "IS_TILED_ENV_CONSTRAINT", None) |
| 56 | + if is_tiled is None or is_tiled == False: |
| 57 | + raise ValueError("The given environment does not " |
| 58 | + "satisfy the IS_TILED_ENV_CONSTRAINT constraint") |
| 59 | + |
| 60 | + if not isinstance(self.config.policy, WithQTableMixinBase): |
| 61 | + raise InvalidParamValue(param_name="policy", param_value=str(self.config.policy)) |
| 62 | + |
| 63 | + if self.config.estimator is None: |
| 64 | + raise ValueError("Estimator has not been set") |
| 65 | + |
| 66 | + # reset the estimator |
| 67 | + self.config.estimator.reset(self.config.reset_estimator_z_traces) |
| 68 | + |
| 69 | + def actions_before_episode_begins(self, **options) -> None: |
| 70 | + """ |
| 71 | + Actions for the agent to perform |
| 72 | + :param options: |
| 73 | + :return: |
| 74 | + """ |
| 75 | + # reset the estimator |
| 76 | + self.config.estimator.reset(self.config.reset_estimator_z_traces) |
| 77 | + |
| 78 | + def on_episode(self, env: Env) -> tuple: |
| 79 | + """ |
| 80 | + Train the agent on the given algorithm |
| 81 | + :param env: |
| 82 | + :return: |
| 83 | + """ |
| 84 | + |
| 85 | + # reset before the episode begins |
| 86 | + time_step = env.reset() |
| 87 | + state = time_step.observation |
| 88 | + |
| 89 | + # vars to measure performance |
| 90 | + episode_score = 0 |
| 91 | + counter = 0 |
| 92 | + total_distortion = 0 |
| 93 | + T = float('inf') |
| 94 | + actions = [] |
| 95 | + rewards = [] |
| 96 | + for itr in range(self.config.n_itrs_per_episode): |
| 97 | + |
| 98 | + if itr < T: |
| 99 | + # select an action using the current |
| 100 | + # policy |
| 101 | + action_idx = self.config.policy(self.q_table, state) |
| 102 | + |
| 103 | + action = env.get_action(action_idx) |
| 104 | + actions.append(action) |
| 105 | + |
| 106 | + # take action A, observe R, S' |
| 107 | + next_time_step = env.step(action) |
| 108 | + next_state = next_time_step.observation |
| 109 | + reward = next_time_step.reward |
| 110 | + |
| 111 | + episode_score += reward |
| 112 | + rewards.append(reward) |
| 113 | + |
| 114 | + if next_time_step.done: |
| 115 | + T = itr + 1 |
| 116 | + else: |
| 117 | + |
| 118 | + # take the next step |
| 119 | + pass |
| 120 | + |
| 121 | + # should we update |
| 122 | + update_time = itr + 1 - self.config.n |
| 123 | + if update_time >= 0: |
| 124 | + |
| 125 | + # build target |
| 126 | + target = 0 |
| 127 | + for i in range(update_time + 1, min(T, update_time + self.config.n) + 1): |
| 128 | + target += np.power(self.config.gamma, i - update_time - 1) * rewards[i] |
| 129 | + |
| 130 | + if update_time + self.config.n < T: |
| 131 | + q_values_next = self.config.estimator.predict(states[update_time + self.config.n]) |
| 132 | + target += q_values_next[actions[update_time + self.config.n]] |
| 133 | + |
| 134 | + # Update step |
| 135 | + self.config.estimator.update(states[update_time], actions[update_time], target) |
| 136 | + |
| 137 | + if update_time == T - 1: |
| 138 | + break |
| 139 | + |
| 140 | + state = next_state |
| 141 | + action = next_action |
| 142 | + |
| 143 | + |
0 commit comments