|
| 1 | +""" |
| 2 | +This example shows how to create hierarchies suitable to |
| 3 | +be loaded in the ARX tool |
| 4 | +""" |
| 5 | +import csv |
| 6 | +from src.datasets.datasets_loaders import MockSubjectsLoader |
| 7 | + |
| 8 | + |
| 9 | +def get_ethnicity_hierarchy(): |
| 10 | + |
| 11 | + ethnicity_hierarchy = {} |
| 12 | + |
| 13 | + ethnicity_hierarchy["Mixed White/Asian"] = ["White/Asian", "Mixed"] |
| 14 | + ethnicity_hierarchy["Chinese"] = ["Asian", "Asian"] |
| 15 | + ethnicity_hierarchy["Indian"] = ["Asian", "Asian"] |
| 16 | + ethnicity_hierarchy["Mixed White/Black African"] = ["White/Black", "Mixed"] |
| 17 | + ethnicity_hierarchy["Black African"] = ["Black", "African"] |
| 18 | + ethnicity_hierarchy["Asian other"] = ["Asian", "Other"] |
| 19 | + ethnicity_hierarchy["Black other"] = ["Black", "Other"] |
| 20 | + ethnicity_hierarchy["Mixed White/Black Caribbean"] = ["White/Black", "Mixed"] |
| 21 | + ethnicity_hierarchy["Mixed other"] = ["Mixed", "Mixe"] |
| 22 | + ethnicity_hierarchy["Arab"] = ["Asian", "Asian"] |
| 23 | + ethnicity_hierarchy["White Irish"] = ["Irish", "European"] |
| 24 | + ethnicity_hierarchy["Not stated"] = ["Not stated", "Not stated"] |
| 25 | + ethnicity_hierarchy["White Gypsy/Traveller"] = ["White", "White"] |
| 26 | + ethnicity_hierarchy["White British"] = ["British", "European"] |
| 27 | + ethnicity_hierarchy["Bangladeshi"] = ["Asian", "Asian"] |
| 28 | + ethnicity_hierarchy["White other"] = ["White", "White"] |
| 29 | + ethnicity_hierarchy["Black Caribbean"] = ["Black", "Caribbean"] |
| 30 | + ethnicity_hierarchy["Pakistani"] = ["Asian", "Asian"] |
| 31 | + |
| 32 | + return ethnicity_hierarchy |
| 33 | + |
| 34 | + |
| 35 | +if __name__ == '__main__': |
| 36 | + |
| 37 | + # specify the columns to drop |
| 38 | + drop_columns = MockSubjectsLoader.FEATURES_DROP_NAMES + ["preventative_treatment", "gender", |
| 39 | + "education", "mutation_status"] |
| 40 | + MockSubjectsLoader.FEATURES_DROP_NAMES = drop_columns |
| 41 | + |
| 42 | + # do a salary normalization |
| 43 | + MockSubjectsLoader.NORMALIZED_COLUMNS = ["salary"] |
| 44 | + |
| 45 | + # specify the columns to use |
| 46 | + MockSubjectsLoader.COLUMNS_TYPES = {"ethnicity": str, "salary": float, "diagnosis": int} |
| 47 | + ds = MockSubjectsLoader() |
| 48 | + |
| 49 | + ehnicity_map = get_ethnicity_hierarchy() |
| 50 | + # get the ethincity column loop over |
| 51 | + # the values and create the hierarchy file |
| 52 | + filename = "/home/alex/qi3/drl_anonymity/data/hierarchies/ethnicity_hierarchy.csv" |
| 53 | + with open(filename, 'w') as fh: |
| 54 | + writer = csv.writer(fh, delimiter=",") |
| 55 | + |
| 56 | + ethnicity_column = ds.get_column(col_name="ethnicity").values |
| 57 | + |
| 58 | + for val in ethnicity_column: |
| 59 | + |
| 60 | + if val not in ehnicity_map: |
| 61 | + raise ValueError("Value {0} not in ethnicity map") |
| 62 | + |
| 63 | + row = [val] |
| 64 | + row.extend(ehnicity_map[val]) |
| 65 | + writer.writerow(row) |
| 66 | + |
0 commit comments