@@ -179,6 +179,10 @@ mangle_dupe_cols : boolean, default ``True``
179179 Passing in ``False `` will cause data to be overwritten if there are duplicate
180180 names in the columns.
181181
182+ .. deprecated :: 1.5.0
183+ The argument was never implemented, and a new argument where the
184+ renaming pattern can be specified will be added instead.
185+
182186General parsing configuration
183187+++++++++++++++++++++++++++++
184188
@@ -611,6 +615,10 @@ If the header is in a row other than the first, pass the row number to
611615Duplicate names parsing
612616'''''''''''''''''''''''
613617
618+ .. deprecated :: 1.5.0
619+ ``mangle_dupe_cols `` was never implemented, and a new argument where the
620+ renaming pattern can be specified will be added instead.
621+
614622If the file or header contains duplicate names, pandas will by default
615623distinguish between them so as to prevent overwriting data:
616624
@@ -621,27 +629,7 @@ distinguish between them so as to prevent overwriting data:
621629
622630 There is no more duplicate data because ``mangle_dupe_cols=True `` by default,
623631which modifies a series of duplicate columns 'X', ..., 'X' to become
624- 'X', 'X.1', ..., 'X.N'. If ``mangle_dupe_cols=False ``, duplicate data can
625- arise:
626-
627- .. code-block :: ipython
628-
629- In [2]: data = 'a,b,a\n0,1,2\n3,4,5'
630- In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
631- Out[3]:
632- a b a
633- 0 2 1 2
634- 1 5 4 5
635-
636- To prevent users from encountering this problem with duplicate data, a ``ValueError ``
637- exception is raised if ``mangle_dupe_cols != True ``:
638-
639- .. code-block :: ipython
640-
641- In [2]: data = 'a,b,a\n0,1,2\n3,4,5'
642- In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
643- ...
644- ValueError: Setting mangle_dupe_cols=False is not supported yet
632+ 'X', 'X.1', ..., 'X.N'.
645633
646634.. _io.usecols :
647635
0 commit comments