@@ -524,11 +524,11 @@ def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False):
524524
525525 Parameters
526526 ----------
527- xi : array_like
527+ xi : array-like
528528 sorted 1D array of x-coordinates
529- yi : array_like or list of array-likes
529+ yi : array-like or list of array-likes
530530 yi[i][j] is the j-th derivative known at xi[i]
531- order: None or int or array_like of ints. Default: None.
531+ order: None or int or array-like of ints. Default: None.
532532 Specifies the degree of local polynomials. If not None, some
533533 derivatives are ignored.
534534 der : int or list
@@ -546,7 +546,7 @@ def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False):
546546
547547 Returns
548548 -------
549- y : scalar or array_like
549+ y : scalar or array-like
550550 The result, of length R or length M or M by R.
551551 """
552552 from scipy import interpolate
@@ -568,13 +568,13 @@ def _akima_interpolate(xi, yi, x, der=0, axis=0):
568568
569569 Parameters
570570 ----------
571- xi : array_like
571+ xi : array-like
572572 A sorted list of x-coordinates, of length N.
573- yi : array_like
573+ yi : array-like
574574 A 1-D array of real values. `yi`'s length along the interpolation
575575 axis must be equal to the length of `xi`. If N-D array, use axis
576576 parameter to select correct axis.
577- x : scalar or array_like
577+ x : scalar or array-like
578578 Of length M.
579579 der : int, optional
580580 How many derivatives to extract; None for all potentially
@@ -590,7 +590,7 @@ def _akima_interpolate(xi, yi, x, der=0, axis=0):
590590
591591 Returns
592592 -------
593- y : scalar or array_like
593+ y : scalar or array-like
594594 The result, of length R or length M or M by R,
595595
596596 """
@@ -609,14 +609,14 @@ def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolat
609609
610610 Parameters
611611 ----------
612- xi : array_like , shape (n,)
612+ xi : array-like , shape (n,)
613613 1-d array containing values of the independent variable.
614614 Values must be real, finite and in strictly increasing order.
615- yi : array_like
615+ yi : array-like
616616 Array containing values of the dependent variable. It can have
617617 arbitrary number of dimensions, but the length along ``axis``
618618 (see below) must match the length of ``x``. Values must be finite.
619- x : scalar or array_like , shape (m,)
619+ x : scalar or array-like , shape (m,)
620620 axis : int, optional
621621 Axis along which `y` is assumed to be varying. Meaning that for
622622 ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
@@ -644,7 +644,7 @@ def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolat
644644 tuple `(order, deriv_values)` allowing to specify arbitrary
645645 derivatives at curve ends:
646646 * `order`: the derivative order, 1 or 2.
647- * `deriv_value`: array_like containing derivative values, shape must
647+ * `deriv_value`: array-like containing derivative values, shape must
648648 be the same as `y`, excluding ``axis`` dimension. For example, if
649649 `y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with
650650 the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D
@@ -661,7 +661,7 @@ def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolat
661661
662662 Returns
663663 -------
664- y : scalar or array_like
664+ y : scalar or array-like
665665 The result, of shape (m,)
666666
667667 References
0 commit comments