@@ -12095,14 +12095,87 @@ def skew(
1209512095 ) -> Series | Any : ...
1209612096
1209712097 @deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "skew" )
12098- @doc (make_doc ("skew" , ndim = 2 ))
1209912098 def skew (
1210012099 self ,
1210112100 axis : Axis | None = 0 ,
1210212101 skipna : bool = True ,
1210312102 numeric_only : bool = False ,
1210412103 ** kwargs ,
1210512104 ) -> Series | Any :
12105+ """
12106+ Return unbiased skew over requested axis.
12107+
12108+ Normalized by N-1.
12109+
12110+ Parameters
12111+ ----------
12112+ axis : {index (0), columns (1)}
12113+ Axis for the function to be applied on.
12114+ For `Series` this parameter is unused and defaults to 0.
12115+
12116+ For DataFrames, specifying ``axis=None`` will apply the aggregation
12117+ across both axes.
12118+
12119+ .. versionadded:: 2.0.0
12120+
12121+ skipna : bool, default True
12122+ Exclude NA/null values when computing the result.
12123+ numeric_only : bool, default False
12124+ Include only float, int, boolean columns.
12125+
12126+ **kwargs
12127+ Additional keyword arguments to be passed to the function.
12128+
12129+ Returns
12130+ -------
12131+ Series or scalar
12132+ Unbiased skew over requested axis.
12133+
12134+ See Also
12135+ --------
12136+ Dataframe.kurt : Returns unbiased kurtosis over requested axis.
12137+
12138+ Examples
12139+ --------
12140+ >>> s = pd.Series([1, 2, 3])
12141+ >>> s.skew()
12142+ 0.0
12143+
12144+ With a DataFrame
12145+
12146+ >>> df = pd.DataFrame(
12147+ ... {"a": [1, 2, 3], "b": [2, 3, 4], "c": [1, 3, 5]},
12148+ ... index=["tiger", "zebra", "cow"],
12149+ ... )
12150+ >>> df
12151+ a b c
12152+ tiger 1 2 1
12153+ zebra 2 3 3
12154+ cow 3 4 5
12155+ >>> df.skew()
12156+ a 0.0
12157+ b 0.0
12158+ c 0.0
12159+ dtype: float64
12160+
12161+ Using axis=1
12162+
12163+ >>> df.skew(axis=1)
12164+ tiger 1.732051
12165+ zebra -1.732051
12166+ cow 0.000000
12167+ dtype: float64
12168+
12169+ In this case, `numeric_only` should be set to `True` to avoid
12170+ getting an error.
12171+
12172+ >>> df = pd.DataFrame(
12173+ ... {"a": [1, 2, 3], "b": ["T", "Z", "X"]}, index=["tiger", "zebra", "cow"]
12174+ ... )
12175+ >>> df.skew(numeric_only=True)
12176+ a 0.0
12177+ dtype: float64
12178+ """
1210612179 result = super ().skew (
1210712180 axis = axis , skipna = skipna , numeric_only = numeric_only , ** kwargs
1210812181 )
0 commit comments