@@ -227,7 +227,7 @@ def read_excel(
227227 * ``1``: 2nd sheet as a `DataFrame`
228228 * ``"Sheet1"``: Load sheet with name "Sheet1"
229229 * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
230- as a dict of `DataFrame`
230+ as a dict of `DataFrame`
231231 * ``None``: All worksheets.
232232
233233 header : int, list of int, default 0
@@ -239,23 +239,25 @@ def read_excel(
239239 then you should explicitly pass header=None.
240240 index_col : int, str, list of int, default None
241241 Column (0-indexed) to use as the row labels of the DataFrame.
242- Pass None if there is no such column. If a list is passed,
243- those columns will be combined into a ``MultiIndex``. If a
242+ Pass None if there is no such column. If a list is passed,
243+ those columns will be combined into a ``MultiIndex``. If a
244244 subset of data is selected with ``usecols``, index_col
245245 is based on the subset.
246+
246247 Missing values will be forward filled to allow roundtripping with ``to_excel``
247248 for ``merged_cells=True``. To avoid forward filling the missing values use
248249 ``set_index`` after reading the data instead of ``index_col``.
250+
249251 usecols : str, list-like, or callable, default None
250252 * If None, then parse all columns.
251253 * If str, then indicates comma separated list of Excel column letters
252- and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
253- both sides.
254+ and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
255+ both sides.
254256 * If list of int, then indicates list of column numbers to be parsed
255- (0-indexed).
257+ (0-indexed).
256258 * If list of string, then indicates list of column names to be parsed.
257259 * If callable, then evaluate each column name against it and parse the
258- column if the callable returns ``True``.
260+ column if the callable returns ``True``.
259261
260262 Returns a subset of the columns according to behavior above.
261263
@@ -272,15 +274,15 @@ def read_excel(
272274
273275 - ``openpyxl`` supports newer Excel file formats.
274276 - ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
275- and OpenDocument (.ods) file formats.
277+ and OpenDocument (.ods) file formats.
276278 - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
277279 - ``pyxlsb`` supports Binary Excel files.
278280 - ``xlrd`` supports old-style Excel files (.xls).
279281
280282 When ``engine=None``, the following logic will be used to determine the engine:
281283
282284 - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
283- then `odf <https://pypi.org/project/odfpy/>`_ will be used.
285+ then `odf <https://pypi.org/project/odfpy/>`_ will be used.
284286 - Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used.
285287 - Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used.
286288 - Otherwise ``openpyxl`` will be used.
@@ -313,13 +315,13 @@ def read_excel(
313315 Depending on whether ``na_values`` is passed in, the behavior is as follows:
314316
315317 * If ``keep_default_na`` is True, and ``na_values`` are specified,
316- ``na_values`` is appended to the default NaN values used for parsing.
318+ ``na_values`` is appended to the default NaN values used for parsing.
317319 * If ``keep_default_na`` is True, and ``na_values`` are not specified, only
318- the default NaN values are used for parsing.
320+ the default NaN values are used for parsing.
319321 * If ``keep_default_na`` is False, and ``na_values`` are specified, only
320- the NaN values specified ``na_values`` are used for parsing.
322+ the NaN values specified ``na_values`` are used for parsing.
321323 * If ``keep_default_na`` is False, and ``na_values`` are not specified, no
322- strings will be parsed as NaN.
324+ strings will be parsed as NaN.
323325
324326 Note that if `na_filter` is passed in as False, the ``keep_default_na`` and
325327 ``na_values`` parameters will be ignored.
@@ -328,21 +330,23 @@ def read_excel(
328330 Detect missing value markers (empty strings and the value of na_values). In
329331 data without any NAs, passing ``na_filter=False`` can improve the performance
330332 of reading a large file.
333+
331334 verbose : bool, default False
332335 Indicate number of NA values placed in non-numeric columns.
336+
333337 parse_dates : bool, list-like, or dict, default False
334338 The behavior is as follows:
335339
336340 * ``bool``. If True -> try parsing the index.
337341 * ``list`` of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
338- each as a separate date column.
342+ each as a separate date column.
339343 * ``list`` of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
340- a single date column.
344+ a single date column.
341345 * ``dict``, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
342- result 'foo'
346+ result 'foo'
343347
344348 If a column or index contains an unparsable date, the entire column or
345- index will be returned unaltered as an object data type. If you don` t want to
349+ index will be returned unaltered as an object data type. If you don’ t want to
346350 parse some cells as date just change their type in Excel to "Text".
347351 For non-standard datetime parsing, use ``pd.to_datetime`` after
348352 ``pd.read_excel``.
0 commit comments