@@ -37,6 +37,43 @@ See :ref:`policies.version` for more.
3737 Enhancements
3838~~~~~~~~~~~~
3939
40+ .. _whatsnew_100.numba_rolling_apply :
41+
42+ Using Numba in ``rolling.apply `` and ``expanding.apply ``
43+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
44+
45+ We've added an ``engine `` keyword to :meth: `~core.window.rolling.Rolling.apply ` and :meth: `~core.window.expanding.Expanding.apply `
46+ that allows the user to execute the routine using `Numba <https://numba.pydata.org/ >`__ instead of Cython.
47+ Using the Numba engine can yield significant performance gains if the apply function can operate on numpy arrays and
48+ the data set is larger (1 million rows or greater). For more details, see
49+ :ref: `rolling apply documentation <stats.rolling_apply >` (:issue: `28987 `, :issue: `30936 `)
50+
51+ .. _whatsnew_100.custom_window :
52+
53+ Defining custom windows for rolling operations
54+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
55+
56+ We've added a :func: `pandas.api.indexers.BaseIndexer ` class that allows users to define how
57+ window bounds are created during ``rolling `` operations. Users can define their own ``get_window_bounds ``
58+ method on a :func: `pandas.api.indexers.BaseIndexer ` subclass that will generate the start and end
59+ indices used for each window during the rolling aggregation. For more details and example usage, see
60+ the :ref: `custom window rolling documentation <stats.custom_rolling_window >`
61+
62+ .. _whatsnew_100.to_markdown :
63+
64+ Converting to Markdown
65+ ^^^^^^^^^^^^^^^^^^^^^^
66+
67+ We've added :meth: `~DataFrame.to_markdown ` for creating a markdown table (:issue: `11052 `)
68+
69+ .. ipython :: python
70+
71+ df = pd.DataFrame({" A" : [1 , 2 , 3 ], " B" : [1 , 2 , 3 ]}, index = [' a' , ' a' , ' b' ])
72+ print (df.to_markdown())
73+
74+ Experimental new features
75+ ~~~~~~~~~~~~~~~~~~~~~~~~~
76+
4077.. _whatsnew_100.NA :
4178
4279Experimental ``NA `` scalar to denote missing values
@@ -187,44 +224,11 @@ This is especially useful after reading in data using readers such as :func:`rea
187224and :func: `read_excel `.
188225See :ref: `here <missing_data.NA.conversion >` for a description.
189226
190- .. _whatsnew_100.numba_rolling_apply :
191-
192- Using Numba in ``rolling.apply ``
193- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
194-
195- We've added an ``engine `` keyword to :meth: `~core.window.rolling.Rolling.apply ` that allows the user to execute the
196- routine using `Numba <https://numba.pydata.org/ >`__ instead of Cython. Using the Numba engine
197- can yield significant performance gains if the apply function can operate on numpy arrays and
198- the data set is larger (1 million rows or greater). For more details, see
199- :ref: `rolling apply documentation <stats.rolling_apply >` (:issue: `28987 `)
200-
201- .. _whatsnew_100.custom_window :
202-
203- Defining custom windows for rolling operations
204- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
205-
206- We've added a :func: `pandas.api.indexers.BaseIndexer ` class that allows users to define how
207- window bounds are created during ``rolling `` operations. Users can define their own ``get_window_bounds ``
208- method on a :func: `pandas.api.indexers.BaseIndexer ` subclass that will generate the start and end
209- indices used for each window during the rolling aggregation. For more details and example usage, see
210- the :ref: `custom window rolling documentation <stats.custom_rolling_window >`
211-
212- .. _whatsnew_100.to_markdown :
213-
214- Converting to Markdown
215- ^^^^^^^^^^^^^^^^^^^^^^
216-
217- We've added :meth: `~DataFrame.to_markdown ` for creating a markdown table (:issue: `11052 `)
218-
219- .. ipython :: python
220-
221- df = pd.DataFrame({" A" : [1 , 2 , 3 ], " B" : [1 , 2 , 3 ]}, index = [' a' , ' a' , ' b' ])
222- print (df.to_markdown())
223227
224228.. _whatsnew_100.enhancements.other :
225229
226230Other enhancements
227- ^^^^^^^^^^^^^^^^^^
231+ ~~~~~~~~~~~~~~~~~~
228232
229233- :meth: `DataFrame.to_string ` added the ``max_colwidth `` parameter to control when wide columns are truncated (:issue: `9784 `)
230234- Added the ``na_value `` argument to :meth: `Series.to_numpy `, :meth: `Index.to_numpy ` and :meth: `DataFrame.to_numpy ` to control the value used for missing data (:issue: `30322 `)
@@ -257,13 +261,6 @@ Other enhancements
257261- :meth: `DataFrame.to_pickle ` and :func: `read_pickle ` now accept URL (:issue: `30163 `)
258262
259263
260- Build Changes
261- ^^^^^^^^^^^^^
262-
263- Pandas has added a `pyproject.toml <https://www.python.org/dev/peps/pep-0517/ >`_ file and will no longer include
264- cythonized files in the source distribution uploaded to PyPI (:issue: `28341 `, :issue: `20775 `). If you're installing
265- a built distribution (wheel) or via conda, this shouldn't have any effect on you. If you're building pandas from
266- source, you should no longer need to install Cython into your build environment before calling ``pip install pandas ``.
267264
268265.. ---------------------------------------------------------------------------
269266
@@ -749,6 +746,15 @@ Optional libraries below the lowest tested version may still work, but are not c
749746
750747See :ref: `install.dependencies ` and :ref: `install.optional_dependencies ` for more.
751748
749+ Build Changes
750+ ^^^^^^^^^^^^^
751+
752+ Pandas has added a `pyproject.toml <https://www.python.org/dev/peps/pep-0517/ >`_ file and will no longer include
753+ cythonized files in the source distribution uploaded to PyPI (:issue: `28341 `, :issue: `20775 `). If you're installing
754+ a built distribution (wheel) or via conda, this shouldn't have any effect on you. If you're building pandas from
755+ source, you should no longer need to install Cython into your build environment before calling ``pip install pandas ``.
756+
757+
752758.. _whatsnew_100.api.other :
753759
754760Other API changes
0 commit comments