@@ -139,22 +139,22 @@ def scatter_matrix(
139139
140140 >>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
141141 >>> pd.plotting.scatter_matrix(df, alpha=0.2)
142- array([[<AxesSubplot:xlabel='A', ylabel='A'>,
143- <AxesSubplot:xlabel='B', ylabel='A'>,
144- <AxesSubplot:xlabel='C', ylabel='A'>,
145- <AxesSubplot:xlabel='D', ylabel='A'>],
146- [<AxesSubplot:xlabel='A', ylabel='B'>,
147- <AxesSubplot:xlabel='B', ylabel='B'>,
148- <AxesSubplot:xlabel='C', ylabel='B'>,
149- <AxesSubplot:xlabel='D', ylabel='B'>],
150- [<AxesSubplot:xlabel='A', ylabel='C'>,
151- <AxesSubplot:xlabel='B', ylabel='C'>,
152- <AxesSubplot:xlabel='C', ylabel='C'>,
153- <AxesSubplot:xlabel='D', ylabel='C'>],
154- [<AxesSubplot:xlabel='A', ylabel='D'>,
155- <AxesSubplot:xlabel='B', ylabel='D'>,
156- <AxesSubplot:xlabel='C', ylabel='D'>,
157- <AxesSubplot:xlabel='D', ylabel='D'>]], dtype=object)
142+ array([[<AxesSubplot: xlabel='A', ylabel='A'>,
143+ <AxesSubplot: xlabel='B', ylabel='A'>,
144+ <AxesSubplot: xlabel='C', ylabel='A'>,
145+ <AxesSubplot: xlabel='D', ylabel='A'>],
146+ [<AxesSubplot: xlabel='A', ylabel='B'>,
147+ <AxesSubplot: xlabel='B', ylabel='B'>,
148+ <AxesSubplot: xlabel='C', ylabel='B'>,
149+ <AxesSubplot: xlabel='D', ylabel='B'>],
150+ [<AxesSubplot: xlabel='A', ylabel='C'>,
151+ <AxesSubplot: xlabel='B', ylabel='C'>,
152+ <AxesSubplot: xlabel='C', ylabel='C'>,
153+ <AxesSubplot: xlabel='D', ylabel='C'>],
154+ [<AxesSubplot: xlabel='A', ylabel='D'>,
155+ <AxesSubplot: xlabel='B', ylabel='D'>,
156+ <AxesSubplot: xlabel='C', ylabel='D'>,
157+ <AxesSubplot: xlabel='D', ylabel='D'>]], dtype=object)
158158 """
159159 plot_backend = _get_plot_backend ("matplotlib" )
160160 return plot_backend .scatter_matrix (
@@ -247,7 +247,7 @@ def radviz(
247247 ... }
248248 ... )
249249 >>> pd.plotting.radviz(df, 'Category')
250- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
250+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
251251 """
252252 plot_backend = _get_plot_backend ("matplotlib" )
253253 return plot_backend .radviz (
@@ -311,7 +311,7 @@ def andrews_curves(
311311 ... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
312312 ... )
313313 >>> pd.plotting.andrews_curves(df, 'Name')
314- <AxesSubplot:title={'center':'width'}>
314+ <AxesSubplot: title={'center': 'width'}>
315315 """
316316 plot_backend = _get_plot_backend ("matplotlib" )
317317 return plot_backend .andrews_curves (
@@ -445,7 +445,7 @@ def parallel_coordinates(
445445 >>> pd.plotting.parallel_coordinates(
446446 ... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
447447 ... )
448- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
448+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
449449 """
450450 plot_backend = _get_plot_backend ("matplotlib" )
451451 return plot_backend .parallel_coordinates (
@@ -494,15 +494,15 @@ def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Ax
494494 >>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
495495 >>> s = pd.Series(x)
496496 >>> s.plot()
497- <AxesSubplot:xlabel='Midrange'>
497+ <AxesSubplot: xlabel='Midrange'>
498498
499499 A lag plot with ``lag=1`` returns
500500
501501 .. plot::
502502 :context: close-figs
503503
504504 >>> pd.plotting.lag_plot(s, lag=1)
505- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
505+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
506506 """
507507 plot_backend = _get_plot_backend ("matplotlib" )
508508 return plot_backend .lag_plot (series = series , lag = lag , ax = ax , ** kwds )
@@ -536,7 +536,7 @@ def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Ax
536536 >>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
537537 >>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
538538 >>> pd.plotting.autocorrelation_plot(s)
539- <AxesSubplot:title={'center':'width'}, xlabel='Lag', ylabel='Autocorrelation'>
539+ <AxesSubplot: title={'center': 'width'}, xlabel='Lag', ylabel='Autocorrelation'>
540540 """
541541 plot_backend = _get_plot_backend ("matplotlib" )
542542 return plot_backend .autocorrelation_plot (series = series , ax = ax , ** kwargs )
0 commit comments