|
| 1 | +import * as tf from '@tensorflow/tfjs-node'; |
| 2 | +import MLflow from 'mlflow-js'; |
| 3 | +import { fileURLToPath } from 'url'; |
| 4 | +import { dirname } from 'path'; |
| 5 | + |
| 6 | +const mlflow = new MLflow('http://localhost:5001'); |
| 7 | + |
| 8 | +const HYPERPARAMETER_SPACE = { |
| 9 | + networkArchitectures: [ |
| 10 | + [16, 8], // Small network |
| 11 | + [32, 16], // Medium network |
| 12 | + [64, 32], // Larger network |
| 13 | + ], |
| 14 | + learningRates: [0.001, 0.01], |
| 15 | + batchSizes: [32, 64], |
| 16 | + dropoutRates: [0, 0.2], |
| 17 | +}; |
| 18 | + |
| 19 | +const TRAINING_CONFIG = { |
| 20 | + epochs: 20, |
| 21 | + validationSplit: 0.2, |
| 22 | + earlyStoppingPatience: 3, |
| 23 | + datasetSize: 2000, |
| 24 | + inputFeatures: 5, |
| 25 | + outputClasses: 3, |
| 26 | + minibatchSize: 128, // Added for faster training |
| 27 | +}; |
| 28 | + |
| 29 | +// Data generation |
| 30 | +function generateData() { |
| 31 | + return tf.tidy(() => { |
| 32 | + const x = tf.randomNormal([ |
| 33 | + TRAINING_CONFIG.datasetSize, |
| 34 | + TRAINING_CONFIG.inputFeatures, |
| 35 | + ]); |
| 36 | + |
| 37 | + const weights = tf.randomNormal([ |
| 38 | + TRAINING_CONFIG.inputFeatures, |
| 39 | + TRAINING_CONFIG.outputClasses, |
| 40 | + ]); |
| 41 | + const logits = x.matMul(weights); |
| 42 | + const y = tf.softmax(logits); |
| 43 | + |
| 44 | + // Split into train and validation sets |
| 45 | + const splitIdx = Math.floor(TRAINING_CONFIG.datasetSize * 0.8); |
| 46 | + |
| 47 | + return { |
| 48 | + trainX: x.slice([0, 0], [splitIdx, -1]), |
| 49 | + trainY: y.slice([0, 0], [splitIdx, -1]), |
| 50 | + testX: x.slice([splitIdx, 0], [-1, -1]), |
| 51 | + testY: y.slice([splitIdx, 0], [-1, -1]), |
| 52 | + }; |
| 53 | + }); |
| 54 | +} |
| 55 | + |
| 56 | +// Model creation |
| 57 | +function createModel(architecture, learningRate, dropoutRate) { |
| 58 | + const model = tf.sequential(); |
| 59 | + |
| 60 | + // Input layer |
| 61 | + model.add( |
| 62 | + tf.layers.dense({ |
| 63 | + units: architecture[0], |
| 64 | + inputShape: [TRAINING_CONFIG.inputFeatures], |
| 65 | + activation: 'relu', |
| 66 | + }) |
| 67 | + ); |
| 68 | + |
| 69 | + if (dropoutRate > 0) { |
| 70 | + model.add(tf.layers.dropout({ rate: dropoutRate })); |
| 71 | + } |
| 72 | + |
| 73 | + // Hidden layers |
| 74 | + for (let i = 1; i < architecture.length; i++) { |
| 75 | + model.add( |
| 76 | + tf.layers.dense({ |
| 77 | + units: architecture[i], |
| 78 | + activation: 'relu', |
| 79 | + }) |
| 80 | + ); |
| 81 | + } |
| 82 | + |
| 83 | + // Output layer |
| 84 | + model.add( |
| 85 | + tf.layers.dense({ |
| 86 | + units: TRAINING_CONFIG.outputClasses, |
| 87 | + activation: 'softmax', |
| 88 | + }) |
| 89 | + ); |
| 90 | + |
| 91 | + model.compile({ |
| 92 | + optimizer: tf.train.adam(learningRate), |
| 93 | + loss: 'categoricalCrossentropy', |
| 94 | + metrics: ['accuracy'], |
| 95 | + }); |
| 96 | + |
| 97 | + return model; |
| 98 | +} |
| 99 | + |
| 100 | +class MLflowCallback extends tf.Callback { |
| 101 | + constructor(runId) { |
| 102 | + super(); |
| 103 | + this.runId = runId; |
| 104 | + this.batchesLogged = 0; |
| 105 | + this.logInterval = 2; // Log every 2 epochs to reduce overhead |
| 106 | + } |
| 107 | + |
| 108 | + async onEpochEnd(epoch, logs) { |
| 109 | + if ( |
| 110 | + epoch % this.logInterval === 0 || |
| 111 | + epoch === TRAINING_CONFIG.epochs - 1 |
| 112 | + ) { |
| 113 | + const metrics = [ |
| 114 | + { |
| 115 | + key: 'train_loss', |
| 116 | + value: logs.loss, |
| 117 | + timestamp: Date.now(), |
| 118 | + step: epoch, |
| 119 | + }, |
| 120 | + { |
| 121 | + key: 'train_accuracy', |
| 122 | + value: logs.acc, |
| 123 | + timestamp: Date.now(), |
| 124 | + step: epoch, |
| 125 | + }, |
| 126 | + { |
| 127 | + key: 'val_loss', |
| 128 | + value: logs.val_loss, |
| 129 | + timestamp: Date.now(), |
| 130 | + step: epoch, |
| 131 | + }, |
| 132 | + { |
| 133 | + key: 'val_accuracy', |
| 134 | + value: logs.val_acc, |
| 135 | + timestamp: Date.now(), |
| 136 | + step: epoch, |
| 137 | + }, |
| 138 | + ]; |
| 139 | + await mlflow.logBatch(this.runId, metrics); |
| 140 | + } |
| 141 | + } |
| 142 | +} |
| 143 | + |
| 144 | +async function trainModel(model, trainX, trainY, valX, valY, runId, batchSize) { |
| 145 | + return await model.fit(trainX, trainY, { |
| 146 | + epochs: TRAINING_CONFIG.epochs, |
| 147 | + batchSize: batchSize, |
| 148 | + validationData: [valX, valY], |
| 149 | + callbacks: [ |
| 150 | + tf.callbacks.earlyStopping({ |
| 151 | + monitor: 'val_loss', |
| 152 | + patience: TRAINING_CONFIG.earlyStoppingPatience, |
| 153 | + }), |
| 154 | + new MLflowCallback(runId), |
| 155 | + ], |
| 156 | + shuffle: true, |
| 157 | + }); |
| 158 | +} |
| 159 | + |
| 160 | +function evaluateModel(model, testX, testY) { |
| 161 | + return tf.tidy(() => { |
| 162 | + const evaluation = model.evaluate(testX, testY); |
| 163 | + const predictions = model.predict(testX); |
| 164 | + |
| 165 | + const confusionMatrix = tf.math.confusionMatrix( |
| 166 | + tf.argMax(testY, 1), |
| 167 | + tf.argMax(predictions, 1), |
| 168 | + TRAINING_CONFIG.outputClasses |
| 169 | + ); |
| 170 | + |
| 171 | + return { |
| 172 | + testLoss: evaluation[0].dataSync()[0], |
| 173 | + testAccuracy: evaluation[1].dataSync()[0], |
| 174 | + confusionMatrix: confusionMatrix.arraySync(), |
| 175 | + }; |
| 176 | + }); |
| 177 | +} |
| 178 | + |
| 179 | +async function runExperiment(experimentId, hyperparams, data) { |
| 180 | + const runName = `NN-${hyperparams.architecture.join('-')}-lr${ |
| 181 | + hyperparams.learningRate |
| 182 | + }`; |
| 183 | + const run = await mlflow.createRun(experimentId, runName); |
| 184 | + const runId = run.info.run_id; |
| 185 | + |
| 186 | + try { |
| 187 | + // Log hyperparameters |
| 188 | + const params = [ |
| 189 | + { key: 'architecture', value: hyperparams.architecture.join(',') }, |
| 190 | + { key: 'learning_rate', value: hyperparams.learningRate.toString() }, |
| 191 | + { key: 'batch_size', value: hyperparams.batchSize.toString() }, |
| 192 | + { key: 'dropout_rate', value: hyperparams.dropoutRate.toString() }, |
| 193 | + ]; |
| 194 | + await mlflow.logBatch(runId, undefined, params); |
| 195 | + |
| 196 | + const model = createModel( |
| 197 | + hyperparams.architecture, |
| 198 | + hyperparams.learningRate, |
| 199 | + hyperparams.dropoutRate |
| 200 | + ); |
| 201 | + |
| 202 | + await trainModel( |
| 203 | + model, |
| 204 | + data.trainX, |
| 205 | + data.trainY, |
| 206 | + data.testX, |
| 207 | + data.testY, |
| 208 | + runId, |
| 209 | + hyperparams.batchSize |
| 210 | + ); |
| 211 | + |
| 212 | + const evaluation = evaluateModel(model, data.testX, data.testY); |
| 213 | + |
| 214 | + const finalMetrics = [ |
| 215 | + { key: 'test_loss', value: evaluation.testLoss, timestamp: Date.now() }, |
| 216 | + { |
| 217 | + key: 'test_accuracy', |
| 218 | + value: evaluation.testAccuracy, |
| 219 | + timestamp: Date.now(), |
| 220 | + }, |
| 221 | + ]; |
| 222 | + await mlflow.logBatch(runId, finalMetrics); |
| 223 | + |
| 224 | + const tags = [ |
| 225 | + { |
| 226 | + key: 'confusion_matrix', |
| 227 | + value: JSON.stringify(evaluation.confusionMatrix), |
| 228 | + }, |
| 229 | + ]; |
| 230 | + await mlflow.logBatch(runId, undefined, undefined, tags); |
| 231 | + |
| 232 | + // Save model artifacts |
| 233 | + const __filename = fileURLToPath(import.meta.url); |
| 234 | + const __dirname = dirname(__filename); |
| 235 | + const artifactsPath = `${__dirname}/../mlruns/${experimentId}/${runId}/artifacts`; |
| 236 | + await model.save(`file://${artifactsPath}/model`); |
| 237 | + |
| 238 | + await mlflow.updateRun(runId, 'FINISHED'); |
| 239 | + |
| 240 | + return { |
| 241 | + runId, |
| 242 | + metrics: evaluation, |
| 243 | + }; |
| 244 | + } catch (error) { |
| 245 | + console.error(`Error in run ${runId}:`, error); |
| 246 | + await mlflow.updateRun(runId, 'FAILED'); |
| 247 | + throw error; |
| 248 | + } |
| 249 | +} |
| 250 | + |
| 251 | +async function main() { |
| 252 | + try { |
| 253 | + console.time('Total Execution Time'); |
| 254 | + |
| 255 | + const experimentName = 'Neural_Network_Hyperparameter_Tuning_Fast'; |
| 256 | + let experimentId; |
| 257 | + try { |
| 258 | + const experiment = await mlflow.getExperimentByName(experimentName); |
| 259 | + experimentId = experiment.experiment_id; |
| 260 | + } catch { |
| 261 | + experimentId = await mlflow.createExperiment(experimentName); |
| 262 | + } |
| 263 | + console.log(`MLflow Experiment ID: ${experimentId}`); |
| 264 | + |
| 265 | + console.time('Data Generation'); |
| 266 | + const data = generateData(); |
| 267 | + console.timeEnd('Data Generation'); |
| 268 | + |
| 269 | + const results = []; |
| 270 | + let totalRuns = 0; |
| 271 | + const maxRuns = |
| 272 | + HYPERPARAMETER_SPACE.networkArchitectures.length * |
| 273 | + HYPERPARAMETER_SPACE.learningRates.length * |
| 274 | + HYPERPARAMETER_SPACE.batchSizes.length * |
| 275 | + HYPERPARAMETER_SPACE.dropoutRates.length; |
| 276 | + |
| 277 | + console.log(`\nStarting ${maxRuns} training runs...`); |
| 278 | + |
| 279 | + for (const architecture of HYPERPARAMETER_SPACE.networkArchitectures) { |
| 280 | + for (const learningRate of HYPERPARAMETER_SPACE.learningRates) { |
| 281 | + for (const batchSize of HYPERPARAMETER_SPACE.batchSizes) { |
| 282 | + for (const dropoutRate of HYPERPARAMETER_SPACE.dropoutRates) { |
| 283 | + totalRuns++; |
| 284 | + console.time(`Run ${totalRuns}`); |
| 285 | + |
| 286 | + const hyperparams = { |
| 287 | + architecture, |
| 288 | + learningRate, |
| 289 | + batchSize, |
| 290 | + dropoutRate, |
| 291 | + }; |
| 292 | + |
| 293 | + console.log(`\nRun ${totalRuns}/${maxRuns}:`, hyperparams); |
| 294 | + |
| 295 | + const result = await runExperiment(experimentId, hyperparams, data); |
| 296 | + results.push(result); |
| 297 | + |
| 298 | + console.log(`Accuracy: ${result.metrics.testAccuracy.toFixed(4)}`); |
| 299 | + console.timeEnd(`Run ${totalRuns}`); |
| 300 | + } |
| 301 | + } |
| 302 | + } |
| 303 | + } |
| 304 | + |
| 305 | + const bestRun = results.reduce((best, current) => { |
| 306 | + return current.metrics.testAccuracy > best.metrics.testAccuracy |
| 307 | + ? current |
| 308 | + : best; |
| 309 | + }); |
| 310 | + |
| 311 | + console.log('\nBest performing run:', bestRun.runId); |
| 312 | + console.log('Test accuracy:', bestRun.metrics.testAccuracy); |
| 313 | + |
| 314 | + // Register best model if accuracy is good enough |
| 315 | + if (bestRun.metrics.testAccuracy > 0.8) { |
| 316 | + const modelName = 'NeuralNetworkClassifier_Fast'; |
| 317 | + try { |
| 318 | + await mlflow.createRegisteredModel( |
| 319 | + modelName, |
| 320 | + [{ key: 'task', value: 'classification' }], |
| 321 | + 'Optimized neural network classifier' |
| 322 | + ); |
| 323 | + |
| 324 | + const modelVersion = await mlflow.createModelVersion( |
| 325 | + modelName, |
| 326 | + `runs:/${bestRun.runId}/model`, |
| 327 | + bestRun.runId, |
| 328 | + [{ key: 'accuracy', value: bestRun.metrics.testAccuracy.toString() }] |
| 329 | + ); |
| 330 | + } catch (e) { |
| 331 | + console.error('Model registration error:', e.message); |
| 332 | + } |
| 333 | + } |
| 334 | + |
| 335 | + tf.dispose([data.trainX, data.trainY, data.testX, data.testY]); |
| 336 | + |
| 337 | + console.timeEnd('Total Execution Time'); |
| 338 | + console.log( |
| 339 | + `\nView results at http://localhost:5001/#/experiments/${experimentId}` |
| 340 | + ); |
| 341 | + } catch (error) { |
| 342 | + console.error('Experiment failed:', error); |
| 343 | + } |
| 344 | +} |
| 345 | + |
| 346 | +main(); |
0 commit comments