|
1 | 1 | from __future__ import absolute_import, division |
2 | 2 |
|
3 | 3 | import torch |
4 | | -import torch.nn.functional as F |
5 | 4 | from torch.autograd import Variable |
6 | 5 |
|
7 | 6 | import numpy as np |
@@ -45,8 +44,8 @@ def th_map_coordinates(input, coords, order=1): |
45 | 44 |
|
46 | 45 | assert order == 1 |
47 | 46 | input_size = input.size(0) |
48 | | - coords = F.hardtanh(coords, min_val=0, max_val= input_size - 1) |
49 | | - |
| 47 | + |
| 48 | + coords = torch.clamp(coords, 0, input_size - 1) |
50 | 49 | coords_lt = coords.floor().long() |
51 | 50 | coords_rb = coords.ceil().long() |
52 | 51 | coords_lb = torch.stack([coords_lt[:, 0], coords_rb[:, 1]], 1) |
@@ -91,7 +90,7 @@ def th_batch_map_coordinates(input, coords, order=1): |
91 | 90 | input_size = input.size(1) |
92 | 91 | n_coords = coords.size(1) |
93 | 92 |
|
94 | | - coords = F.hardtanh(coords, min_val=0, max_val= input_size - 1) |
| 93 | + coords = torch.clamp(coords, 0, input_size - 1) |
95 | 94 | coords_lt = coords.floor().long() |
96 | 95 | coords_rb = coords.ceil().long() |
97 | 96 | coords_lb = torch.stack([coords_lt[..., 0], coords_rb[..., 1]], 2) |
|
0 commit comments