|
52 | 52 | }, |
53 | 53 | { |
54 | 54 | "cell_type": "code", |
55 | | - "execution_count": null, |
| 55 | + "execution_count": 1, |
56 | 56 | "metadata": {}, |
57 | 57 | "outputs": [ |
58 | 58 | { |
59 | 59 | "name": "stderr", |
60 | 60 | "output_type": "stream", |
61 | 61 | "text": [ |
62 | | - "crypto/v2.0_beta/train.parquet: 3.58MB [00:00, 14.5MB/s] \n" |
| 62 | + "2025-10-08 10:50:06,923 INFO numerapi.utils: starting download\n", |
| 63 | + "crypto/v2.0/train.parquet: 3.83MB [00:00, 13.9MB/s] \n" |
63 | 64 | ] |
64 | 65 | } |
65 | 66 | ], |
|
838 | 839 | }, |
839 | 840 | { |
840 | 841 | "cell_type": "code", |
841 | | - "execution_count": 10, |
| 842 | + "execution_count": 2, |
842 | 843 | "metadata": { |
843 | 844 | "colab": { |
844 | 845 | "base_uri": "https://localhost:8080/", |
|
852 | 853 | "name": "stdout", |
853 | 854 | "output_type": "stream", |
854 | 855 | "text": [ |
855 | | - "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.357879 seconds.\n", |
856 | | - "You can set `force_col_wise=true` to remove the overhead.\n", |
| 856 | + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000796 seconds.\n", |
| 857 | + "You can set `force_row_wise=true` to remove the overhead.\n", |
| 858 | + "And if memory is not enough, you can set `force_col_wise=true`.\n", |
857 | 859 | "[LightGBM] [Info] Total Bins 112\n", |
858 | 860 | "[LightGBM] [Info] Number of data points in the train set: 307157, number of used features: 22\n", |
859 | 861 | "[LightGBM] [Info] Start training from score 0.499976\n", |
|
3589 | 3591 | " n_estimators=2000)" |
3590 | 3592 | ] |
3591 | 3593 | }, |
3592 | | - "execution_count": 5, |
| 3594 | + "execution_count": 2, |
3593 | 3595 | "metadata": {}, |
3594 | 3596 | "output_type": "execute_result" |
3595 | 3597 | } |
|
3669 | 3671 | }, |
3670 | 3672 | { |
3671 | 3673 | "cell_type": "code", |
3672 | | - "execution_count": 24, |
| 3674 | + "execution_count": null, |
3673 | 3675 | "metadata": {}, |
3674 | 3676 | "outputs": [ |
3675 | 3677 | { |
|
3687 | 3689 | "\n", |
3688 | 3690 | "# generate live predictions\n", |
3689 | 3691 | "live_data[\"prediction\"] = model.predict(live_data.filter(like=\"feature_\"))\n", |
3690 | | - "live_data.to_parquet(\"predictions.parquet\")" |
| 3692 | + "submission = live_data[['symbol', 'prediction']]\n", |
| 3693 | + "submission" |
| 3694 | + ] |
| 3695 | + }, |
| 3696 | + { |
| 3697 | + "cell_type": "code", |
| 3698 | + "execution_count": null, |
| 3699 | + "metadata": {}, |
| 3700 | + "outputs": [], |
| 3701 | + "source": [ |
| 3702 | + "# Save and download your predictions\n", |
| 3703 | + "filename = f'crypto_example_preds.csv'\n", |
| 3704 | + "from numerai_tools.scoring import tie_kept_rank\n", |
| 3705 | + "submission[['prediction']] = tie_kept_rank(submission[['prediction']])\n", |
| 3706 | + "submission.to_csv(filename, index=False)\n", |
| 3707 | + "\n", |
| 3708 | + "# Download file if running in Google Colab\n", |
| 3709 | + "try:\n", |
| 3710 | + " from google.colab import files\n", |
| 3711 | + " files.download(filename)\n", |
| 3712 | + "except:\n", |
| 3713 | + " pass" |
3691 | 3714 | ] |
3692 | 3715 | } |
3693 | 3716 | ], |
|
0 commit comments