@@ -200,11 +200,17 @@ class RegistrationInputSpec(ANTSCommandInputSpec):
200200 fixed_image = InputMultiPath (File (exists = True ), mandatory = True ,
201201 desc = 'image to apply transformation to (generally a coregistered functional)' )
202202 fixed_image_mask = File (argstr = '%s' , exists = True ,
203- desc = 'mask used to limit registration region' )
203+ desc = 'mask used to limit metric sampling region of the fixed image ' )
204204 moving_image = InputMultiPath (File (exists = True ), mandatory = True ,
205205 desc = 'image to apply transformation to (generally a coregistered functional)' )
206206 moving_image_mask = File (requires = ['fixed_image_mask' ],
207- exists = True , desc = '' )
207+ exists = True , desc = 'mask used to limit metric sampling region of the moving image' )
208+
209+ save_state = File (argstr = '--save-state %s' , exists = False ,
210+ desc = 'Filename for saving the internal restorable state of the registration' )
211+ restore_state = File (argstr = '--restore-state %s' , exists = True ,
212+ desc = 'Filename for restoring the internal restorable state of the registration' )
213+
208214 initial_moving_transform = File (argstr = '%s' , exists = True , desc = '' ,
209215 xor = ['initial_moving_transform_com' ])
210216 invert_initial_moving_transform = traits .Bool (
@@ -276,6 +282,15 @@ class RegistrationInputSpec(ANTSCommandInputSpec):
276282 'combines all adjacent linear transforms and composes all '
277283 'adjacent displacement field transforms before writing the '
278284 'results to disk.' ))
285+ initialize_transforms_per_stage = traits .Bool (
286+ argstr = '--initialize-transforms-per-stage %d' , default = False ,
287+ usedefault = True , # This should be true for explicit completeness
288+ desc = ('Initialize linear transforms from the previous stage. By enabling this option, '
289+ 'the current linear stage transform is directly intialized from the previous '
290+ 'stages linear transform; this allows multiple linear stages to be run where '
291+ 'each stage directly updates the estimated linear transform from the previous '
292+ 'stage. (e.g. Translation -> Rigid -> Affine). '
293+ ))
279294
280295 transforms = traits .List (traits .Enum ('Rigid' , 'Affine' , 'CompositeAffine' ,
281296 'Similarity' , 'Translation' , 'BSpline' ,
@@ -337,7 +352,7 @@ class RegistrationOutputSpec(TraitedSpec):
337352 File (exists = True ), desc = 'Inverse composite transform file' )
338353 warped_image = File (desc = "Outputs warped image" )
339354 inverse_warped_image = File (desc = "Outputs the inverse of the warped image" )
340-
355+ save_state = File ( desc = "The saved registration state to be restored" )
341356
342357class Registration (ANTSCommand ):
343358
@@ -358,6 +373,7 @@ class Registration(ANTSCommand):
358373 >>> reg.inputs.dimension = 3
359374 >>> reg.inputs.write_composite_transform = True
360375 >>> reg.inputs.collapse_output_transforms = False
376+ >>> reg.inputs.initialize_transforms_per_stage = False
361377 >>> reg.inputs.metric = ['Mattes']*2
362378 >>> reg.inputs.metric_weight = [1]*2 # Default (value ignored currently by ANTs)
363379 >>> reg.inputs.radius_or_number_of_bins = [32]*2
@@ -375,33 +391,36 @@ class Registration(ANTSCommand):
375391 >>> reg1 = copy.deepcopy(reg)
376392 >>> reg1.inputs.winsorize_lower_quantile = 0.025
377393 >>> reg1.cmdline
378- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
394+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
379395 >>> reg1.run() #doctest: +SKIP
380396
381397 >>> reg2 = copy.deepcopy(reg)
382398 >>> reg2.inputs.winsorize_upper_quantile = 0.975
383399 >>> reg2.cmdline
384- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
400+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
385401
386402 >>> reg3 = copy.deepcopy(reg)
387403 >>> reg3.inputs.winsorize_lower_quantile = 0.025
388404 >>> reg3.inputs.winsorize_upper_quantile = 0.975
389405 >>> reg3.cmdline
390- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
406+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
391407
392408 >>> # Test collapse transforms flag
393409 >>> reg4 = copy.deepcopy(reg)
410+ >>> reg.inputs.save_state = 'trans.mat'
411+ >>> reg.inputs.restore_state = 'trans.mat'
412+ >>> reg4.inputs.initialize_transforms_per_stage = True
394413 >>> reg4.inputs.collapse_output_transforms = True
395414 >>> outputs = reg4._list_outputs()
396415 >>> print outputs #doctest: +ELLIPSIS
397- {'reverse_invert_flags': [], 'inverse_composite_transform': ['.../nipype/testing/data/output_InverseComposite.h5'], 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [], 'reverse_transforms': [], 'composite_transform': ['.../nipype/testing/data/output_Composite.h5'], 'forward_transforms': []}
416+ {'reverse_invert_flags': [], 'inverse_composite_transform': ['.../nipype/testing/data/output_InverseComposite.h5'], 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [], 'reverse_transforms': [], 'save_state': <undefined>, ' composite_transform': ['.../nipype/testing/data/output_Composite.h5'], 'forward_transforms': []}
398417
399418 >>> # Test collapse transforms flag
400419 >>> reg4b = copy.deepcopy(reg4)
401420 >>> reg4b.inputs.write_composite_transform = False
402421 >>> outputs = reg4b._list_outputs()
403422 >>> print outputs #doctest: +ELLIPSIS
404- {'reverse_invert_flags': [True, False], 'inverse_composite_transform': <undefined>, 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [False, False], 'reverse_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1InverseWarp.nii.gz'], 'composite_transform': <undefined>, 'forward_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1Warp.nii.gz']}
423+ {'reverse_invert_flags': [True, False], 'inverse_composite_transform': <undefined>, 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [False, False], 'reverse_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1InverseWarp.nii.gz'], 'save_state': <undefined>, ' composite_transform': <undefined>, 'forward_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1Warp.nii.gz']}
405424 >>> reg4b.aggregate_outputs() #doctest: +SKIP
406425
407426 >>> # Test multiple metrics per stage
@@ -412,7 +431,7 @@ class Registration(ANTSCommand):
412431 >>> reg5.inputs.sampling_strategy = ['Random', None] # use default strategy in second stage
413432 >>> reg5.inputs.sampling_percentage = [0.05, [0.05, 0.10]]
414433 >>> reg5.cmdline
415- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
434+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --restore-state trans.mat --save-state trans.mat --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
416435 """
417436 DEF_SAMPLING_STRATEGY = 'None'
418437 """The default sampling strategy argument."""
@@ -581,13 +600,6 @@ def _formatWinsorizeImageIntensities(self):
581600 self ._quantilesDone = True
582601 return '--winsorize-image-intensities [ %s, %s ]' % (self .inputs .winsorize_lower_quantile , self .inputs .winsorize_upper_quantile )
583602
584- def _formatCollapseLinearTransformsToFixedImageHeader (self ):
585- if self .inputs .collapse_linear_transforms_to_fixed_image_header :
586- # return '--collapse-linear-transforms-to-fixed-image-header 1'
587- return ''
588- else :
589- # return '--collapse-linear-transforms-to-fixed-image-header 0'
590- return ''
591603
592604 def _format_arg (self , opt , spec , val ):
593605 if opt == 'fixed_image_mask' :
@@ -636,7 +648,7 @@ def _format_arg(self, opt, spec, val):
636648 return self ._formatWinsorizeImageIntensities ()
637649 return '' # Must return something for argstr!
638650 elif opt == 'collapse_linear_transforms_to_fixed_image_header' :
639- return self . _formatCollapseLinearTransformsToFixedImageHeader ()
651+ return '' # Command no longer exist, so return empty string for backwards compatibility
640652 return super (Registration , self )._format_arg (opt , spec , val )
641653
642654 def _outputFileNames (self , prefix , count , transform , inverse = False ):
@@ -763,4 +775,6 @@ def _list_outputs(self):
763775 outputs ['warped_image' ] = os .path .abspath (out_filename )
764776 if inv_out_filename :
765777 outputs ['inverse_warped_image' ] = os .path .abspath (inv_out_filename )
778+ if len (self .inputs .save_state ):
779+ outputs ['save_state' ] = os .path .abspath (self .inputs .save_state )
766780 return outputs
0 commit comments