|
12 | 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | 13 | # See the License for the specific language governing permissions and |
14 | 14 | # limitations under the License. |
15 | | -from __future__ import annotations |
16 | 15 |
|
| 16 | +# built-in dependencies |
| 17 | +from __future__ import annotations |
17 | 18 | import warnings |
18 | | -from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Sequence, Union, cast |
| 19 | +from typing import ( |
| 20 | + TYPE_CHECKING, |
| 21 | + Any, |
| 22 | + Iterable, |
| 23 | + List, |
| 24 | + Optional, |
| 25 | + Sequence, |
| 26 | + Union, |
| 27 | + cast, |
| 28 | + overload, |
| 29 | +) |
19 | 30 |
|
| 31 | +# 3rd-party dependencies |
20 | 32 | from pydantic import ValidationError |
21 | 33 |
|
| 34 | +# project dependencies |
22 | 35 | from neo4j_graphrag.exceptions import LLMGenerationError |
23 | 36 | from neo4j_graphrag.message_history import MessageHistory |
24 | 37 | from neo4j_graphrag.types import LLMMessage |
25 | | - |
26 | | -from .base import LLMInterface |
27 | 38 | from neo4j_graphrag.utils.rate_limit import ( |
28 | 39 | RateLimitHandler, |
29 | 40 | rate_limit_handler, |
30 | 41 | async_rate_limit_handler, |
31 | 42 | ) |
| 43 | + |
| 44 | +from .base import LLMInterface, LLMInterfaceV2 |
32 | 45 | from .types import ( |
33 | 46 | BaseMessage, |
34 | 47 | LLMResponse, |
|
40 | 53 | if TYPE_CHECKING: |
41 | 54 | from ollama import Message |
42 | 55 |
|
| 56 | +# pylint: disable=redefined-builtin, arguments-differ, raise-missing-from, no-else-return |
| 57 | + |
| 58 | + |
| 59 | +class OllamaLLM(LLMInterface, LLMInterfaceV2): |
| 60 | + """LLM wrapper for Ollama models.""" |
43 | 61 |
|
44 | | -class OllamaLLM(LLMInterface): |
45 | 62 | def __init__( |
46 | 63 | self, |
47 | 64 | model_name: str, |
@@ -78,28 +95,66 @@ def __init__( |
78 | 95 | ) |
79 | 96 | self.model_params = {"options": self.model_params} |
80 | 97 |
|
81 | | - def get_messages( |
| 98 | + # overloads for LLMInterface and LLMInterfaceV2 methods |
| 99 | + @overload |
| 100 | + def invoke( |
82 | 101 | self, |
83 | 102 | input: str, |
84 | 103 | message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
85 | 104 | system_instruction: Optional[str] = None, |
86 | | - ) -> Sequence[Message]: |
87 | | - messages = [] |
88 | | - if system_instruction: |
89 | | - messages.append(SystemMessage(content=system_instruction).model_dump()) |
90 | | - if message_history: |
91 | | - if isinstance(message_history, MessageHistory): |
92 | | - message_history = message_history.messages |
93 | | - try: |
94 | | - MessageList(messages=cast(list[BaseMessage], message_history)) |
95 | | - except ValidationError as e: |
96 | | - raise LLMGenerationError(e.errors()) from e |
97 | | - messages.extend(cast(Iterable[dict[str, Any]], message_history)) |
98 | | - messages.append(UserMessage(content=input).model_dump()) |
99 | | - return messages # type: ignore |
| 105 | + ) -> LLMResponse: ... |
100 | 106 |
|
101 | | - @rate_limit_handler |
| 107 | + @overload |
102 | 108 | def invoke( |
| 109 | + self, |
| 110 | + input: List[LLMMessage], |
| 111 | + ) -> LLMResponse: ... |
| 112 | + |
| 113 | + @overload |
| 114 | + async def ainvoke( |
| 115 | + self, |
| 116 | + input: str, |
| 117 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 118 | + system_instruction: Optional[str] = None, |
| 119 | + ) -> LLMResponse: ... |
| 120 | + |
| 121 | + @overload |
| 122 | + async def ainvoke( |
| 123 | + self, |
| 124 | + input: List[LLMMessage], |
| 125 | + ) -> LLMResponse: ... |
| 126 | + |
| 127 | + # switching logics to LLMInterface or LLMInterfaceV2 |
| 128 | + def invoke( |
| 129 | + self, |
| 130 | + input: Union[str, List[LLMMessage]], |
| 131 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 132 | + system_instruction: Optional[str] = None, |
| 133 | + ) -> LLMResponse: |
| 134 | + if isinstance(input, str): |
| 135 | + return self.__legacy_invoke(input, message_history, system_instruction) |
| 136 | + elif isinstance(input, list): |
| 137 | + return self.__brand_new_invoke(input) |
| 138 | + else: |
| 139 | + raise ValueError(f"Invalid input type for invoke method - {type(input)}") |
| 140 | + |
| 141 | + async def ainvoke( |
| 142 | + self, |
| 143 | + input: Union[str, List[LLMMessage]], |
| 144 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 145 | + system_instruction: Optional[str] = None, |
| 146 | + ) -> LLMResponse: |
| 147 | + if isinstance(input, str): |
| 148 | + return await self.__legacy_ainvoke( |
| 149 | + input, message_history, system_instruction |
| 150 | + ) |
| 151 | + elif isinstance(input, list): |
| 152 | + return await self.__brand_new_ainvoke(input) |
| 153 | + else: |
| 154 | + raise ValueError(f"Invalid input type for ainvoke method - {type(input)}") |
| 155 | + |
| 156 | + @rate_limit_handler |
| 157 | + def __legacy_invoke( |
103 | 158 | self, |
104 | 159 | input: str, |
105 | 160 | message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
@@ -129,8 +184,31 @@ def invoke( |
129 | 184 | except self.ollama.ResponseError as e: |
130 | 185 | raise LLMGenerationError(e) |
131 | 186 |
|
| 187 | + def __brand_new_invoke( |
| 188 | + self, |
| 189 | + input: List[LLMMessage], |
| 190 | + ) -> LLMResponse: |
| 191 | + """Sends text to the LLM and returns a response. |
| 192 | +
|
| 193 | + Args: |
| 194 | + input (str): The text to send to the LLM. |
| 195 | +
|
| 196 | + Returns: |
| 197 | + LLMResponse: The response from the LLM. |
| 198 | + """ |
| 199 | + try: |
| 200 | + response = self.client.chat( |
| 201 | + model=self.model_name, |
| 202 | + messages=self.get_brand_new_messages(input), |
| 203 | + **self.model_params, |
| 204 | + ) |
| 205 | + content = response.message.content or "" |
| 206 | + return LLMResponse(content=content) |
| 207 | + except self.ollama.ResponseError as e: |
| 208 | + raise LLMGenerationError(e) |
| 209 | + |
132 | 210 | @async_rate_limit_handler |
133 | | - async def ainvoke( |
| 211 | + async def __legacy_ainvoke( |
134 | 212 | self, |
135 | 213 | input: str, |
136 | 214 | message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
@@ -163,3 +241,59 @@ async def ainvoke( |
163 | 241 | return LLMResponse(content=content) |
164 | 242 | except self.ollama.ResponseError as e: |
165 | 243 | raise LLMGenerationError(e) |
| 244 | + |
| 245 | + async def __brand_new_ainvoke( |
| 246 | + self, |
| 247 | + input: List[LLMMessage], |
| 248 | + ) -> LLMResponse: |
| 249 | + """Asynchronously sends a text input to the OpenAI chat |
| 250 | + completion model and returns the response's content. |
| 251 | +
|
| 252 | + Args: |
| 253 | + input (str): Text sent to the LLM. |
| 254 | +
|
| 255 | + Returns: |
| 256 | + LLMResponse: The response from OpenAI. |
| 257 | +
|
| 258 | + Raises: |
| 259 | + LLMGenerationError: If anything goes wrong. |
| 260 | + """ |
| 261 | + try: |
| 262 | + response = await self.async_client.chat( |
| 263 | + model=self.model_name, |
| 264 | + messages=self.get_brand_new_messages(input), |
| 265 | + options=self.model_params, |
| 266 | + ) |
| 267 | + content = response.message.content or "" |
| 268 | + return LLMResponse(content=content) |
| 269 | + except self.ollama.ResponseError as e: |
| 270 | + raise LLMGenerationError(e) |
| 271 | + |
| 272 | + # subsdiary methods |
| 273 | + def get_messages( |
| 274 | + self, |
| 275 | + input: str, |
| 276 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 277 | + system_instruction: Optional[str] = None, |
| 278 | + ) -> Sequence[Message]: |
| 279 | + """Constructs the message list for the Ollama chat API.""" |
| 280 | + messages = [] |
| 281 | + if system_instruction: |
| 282 | + messages.append(SystemMessage(content=system_instruction).model_dump()) |
| 283 | + if message_history: |
| 284 | + if isinstance(message_history, MessageHistory): |
| 285 | + message_history = message_history.messages |
| 286 | + try: |
| 287 | + MessageList(messages=cast(list[BaseMessage], message_history)) |
| 288 | + except ValidationError as e: |
| 289 | + raise LLMGenerationError(e.errors()) from e |
| 290 | + messages.extend(cast(Iterable[dict[str, Any]], message_history)) |
| 291 | + messages.append(UserMessage(content=input).model_dump()) |
| 292 | + return messages # type: ignore |
| 293 | + |
| 294 | + def get_brand_new_messages( |
| 295 | + self, |
| 296 | + input: list[LLMMessage], |
| 297 | + ) -> Sequence[Message]: |
| 298 | + """Constructs the message list for the Ollama chat API.""" |
| 299 | + return [self.ollama.Message(**i) for i in input] |
0 commit comments