Skip to content

Commit feeb321

Browse files
committed
Link to pandas and nx classes in typed-out ref docs
1 parent 5c5341d commit feeb321

File tree

8 files changed

+1009
-1002
lines changed

8 files changed

+1009
-1002
lines changed

doc/sphinx/algorithms.json

Lines changed: 440 additions & 440 deletions
Large diffs are not rendered by default.

doc/sphinx/source/algorithms.rst

Lines changed: 440 additions & 440 deletions
Large diffs are not rendered by default.

doc/sphinx/source/conf.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,6 @@ def setup(app): # type: ignore
6969
"pandas": ("https://pandas.pydata.org/docs/", None),
7070
"pyarrow": ("https://arrow.apache.org/docs/", None),
7171
"networkx": ("https://networkx.org/documentation/stable/", None),
72-
"nx": ("https://networkx.org/documentation/stable/", None),
7372
}
7473

7574
rst_epilog = """

doc/sphinx/source/graph.rst

Lines changed: 42 additions & 42 deletions
Large diffs are not rendered by default.

doc/sphinx/source/misc.rst

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ This includes procedures for configuring the library.
55
These all assume that an object of :class:`.GraphDataScience` is available as `gds`.
66

77

8-
.. py:function:: gds.alpha.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
8+
.. py:function:: gds.alpha.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame
99
1010
List defaults; global by default, but also optionally for a specific user and/ or key
1111
.. deprecated:: 2.5.0
@@ -17,7 +17,7 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
1717
.. deprecated:: 2.5.0
1818
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.config.defaults.set` instead.
1919

20-
.. py:function:: gds.alpha.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
20+
.. py:function:: gds.alpha.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame
2121
2222
List limits; global by default, but also optionally for a specific user and/ or key
2323
.. deprecated:: 2.5.0
@@ -28,15 +28,15 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
2828
Set a limit; global by, default, but also optionally for a specific user
2929
.. deprecated:: 2.5.0
3030
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.config.limits.set` instead.
31-
.. py:function:: gds.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
31+
.. py:function:: gds.config.defaults.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame
3232
3333
List defaults; global by default, but also optionally for a specific user and/ or key
3434

3535
.. py:function:: gds.config.defaults.set(key: str, value: Any, username: Optional[str] = None) -> None
3636
3737
Set a default; global by, default, but also optionally for a specific user
3838

39-
.. py:function:: gds.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> DataFrame
39+
.. py:function:: gds.config.limits.list(key: Optional[str] = None, username: Optional[str] = None) -> pandas.DataFrame
4040
4141
List limits; global by default, but also optionally for a specific user and/ or key
4242

@@ -49,21 +49,21 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
4949
.. deprecated:: 2.5.0
5050
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.systemMonitor` instead.
5151

52-
.. py:function:: gds.alpha.userLog() -> DataFrame
52+
.. py:function:: gds.alpha.userLog() -> pandas.DataFrame
5353
Log warnings and hints for currently running tasks.
5454
.. deprecated:: 2.5.0
5555
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.userLog` instead.
5656

57-
.. py:function:: gds.beta.listProgress(job_id: Optional[str] = None) -> DataFrame
57+
.. py:function:: gds.beta.listProgress(job_id: Optional[str] = None) -> pandas.DataFrame
5858
List progress events for currently running tasks.
5959
.. deprecated:: 2.5.0
60-
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.listProgress` instead.
60+
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.listProgress` instead.
6161

6262
.. py:function:: gds.systemMonitor() -> Series[Any]
6363
6464
Get an overview of the system's workload and available resources
6565

66-
.. py:function:: gds.listProgress(job_id: Optional[str] = None) -> DataFrame
66+
.. py:function:: gds.listProgress(job_id: Optional[str] = None) -> pandas.DataFrame
6767
6868
List progress events for currently running tasks.
6969

@@ -111,5 +111,5 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
111111
112112
Return True if the graph data science library is licensed.
113113

114-
.. py:function:: gds.userLog() -> DataFrame
114+
.. py:function:: gds.userLog() -> pandas.DataFrame
115115
Log warnings and hints for currently running tasks.

doc/sphinx/source/ml.rst

Lines changed: 49 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -9,241 +9,241 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
99
1010
Get a pipeline object representing a pipeline in the Pipeline Catalog.
1111

12-
.. py:function:: gds.alpha.ml.splitRelationships.mutate(G: Graph, **config: Any) -> Series[Any]
12+
.. py:function:: gds.alpha.ml.splitRelationships.mutate(G: Graph, **config: Any) -> pandas.Series[Any]
1313
1414
Splits a graph into holdout and remaining relationship types and adds them to the graph.
1515

16-
.. py:function:: gds.alpha.ml.splitRelationships.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
16+
.. py:function:: gds.alpha.ml.splitRelationships.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
1717
1818
Splits a graph into holdout and remaining relationship types and adds them to the graph.
1919

20-
.. py:function:: gds.alpha.pipeline.nodeRegression.create(name: str) -> Tuple[NRTrainingPipeline, Series[Any]]
20+
.. py:function:: gds.alpha.pipeline.nodeRegression.create(name: str) -> Tuple[NRTrainingPipeline, pandas.Series[Any]]
2121
2222
Creates a node regression training pipeline in the pipeline catalog.
2323

24-
.. py:function:: gds.beta.graphSage.mutate(G: Graph, **config: Any) -> Series[Any]
24+
.. py:function:: gds.beta.graphSage.mutate(G: Graph, **config: Any) -> pandas.Series[Any]
2525
2626
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
2727

28-
.. py:function:: gds.beta.graphSage.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
28+
.. py:function:: gds.beta.graphSage.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
2929
3030
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
3131

32-
.. py:function:: gds.beta.graphSage.stream(G: Graph, **config: Any) -> DataFrame
32+
.. py:function:: gds.beta.graphSage.stream(G: Graph, **config: Any) -> pandas.DataFrame
3333
3434
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
3535

36-
.. py:function:: gds.beta.graphSage.stream.estimate(G: Graph, **config: Any) -> Series[Any]
36+
.. py:function:: gds.beta.graphSage.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
3737
3838
Returns an estimation of the memory consumption for that procedure.
3939

40-
.. py:function:: gds.beta.graphSage.train(G: Graph, **config: Any) -> Tuple[MODEL_TYPE, Series[Any]]
40+
.. py:function:: gds.beta.graphSage.train(G: Graph, **config: Any) -> Tuple[MODEL_TYPE, pandas.Series[Any]]
4141
4242
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
4343

44-
.. py:function:: gds.beta.graphSage.train.estimate(G: Graph, **config: Any) -> Series[Any]
44+
.. py:function:: gds.beta.graphSage.train.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
4545
4646
Returns an estimation of the memory consumption for that procedure.
4747

48-
.. py:function:: gds.beta.graphSage.write(G: Graph, **config: Any) -> Series[Any]
48+
.. py:function:: gds.beta.graphSage.write(G: Graph, **config: Any) -> pandas.Series[Any]
4949
5050
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
5151

52-
.. py:function:: gds.beta.graphSage.write.estimate(G: Graph, **config: Any) -> Series[Any]
52+
.. py:function:: gds.beta.graphSage.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
5353
5454
Returns an estimation of the memory consumption for that procedure.
5555

5656
.. deprecated:: 2.5.0
5757
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.mutate` instead.
5858

59-
.. py:function:: gds.beta.hashgnn.mutate(G: Graph, **config: Any) -> Series[Any]
59+
.. py:function:: gds.beta.hashgnn.mutate(G: Graph, **config: Any) -> pandas.Series[Any]
6060
6161
HashGNN creates node embeddings by hashing and message passing.
6262

6363
.. deprecated:: 2.5.0
6464
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.mutate.estimate` instead.
6565

66-
.. py:function:: gds.beta.hashgnn.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
66+
.. py:function:: gds.beta.hashgnn.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
6767
6868
HashGNN creates node embeddings by hashing and message passing.
6969

7070
.. deprecated:: 2.5.0
7171
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.stream` instead.
7272

73-
.. py:function:: gds.beta.hashgnn.stream(G: Graph, **config: Any) -> DataFrame
73+
.. py:function:: gds.beta.hashgnn.stream(G: Graph, **config: Any) -> pandas.DataFrame
7474
7575
HashGNN creates node embeddings by hashing and message passing.
7676

7777
.. deprecated:: 2.5.0
7878
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.hashgnn.stream.estimate` instead.
7979

80-
.. py:function:: gds.beta.hashgnn.stream.estimate(G: Graph, **config: Any) -> Series[Any]
80+
.. py:function:: gds.beta.hashgnn.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
8181
8282
HashGNN creates node embeddings by hashing and message passing.
8383

8484
.. deprecated:: 2.5.0
8585
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.mutate` instead.
8686

87-
.. py:function:: gds.beta.node2vec.mutate(G: Graph, **config: Any) -> Series[Any]
87+
.. py:function:: gds.beta.node2vec.mutate(G: Graph, **config: Any) -> pandas.Series[Any]
8888
8989
The Node2Vec algorithm computes embeddings for nodes based on random walks.
9090

9191
.. deprecated:: 2.5.0
9292
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.mutate.estimate` instead.
9393

94-
.. py:function:: gds.beta.node2vec.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
94+
.. py:function:: gds.beta.node2vec.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
9595
9696
Returns an estimation of the memory consumption for that procedure.
9797

9898
.. deprecated:: 2.5.0
9999
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.stream` instead.
100100

101-
.. py:function:: gds.beta.node2vec.stream(G: Graph, **config: Any) -> DataFrame
101+
.. py:function:: gds.beta.node2vec.stream(G: Graph, **config: Any) -> pandas.DataFrame
102102
103103
The Node2Vec algorithm computes embeddings for nodes based on random walks.
104104

105105
.. deprecated:: 2.5.0
106106
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.stream.estimate` instead.
107107

108-
.. py:function:: gds.beta.node2vec.stream.estimate(G: Graph, **config: Any) -> Series[Any]
108+
.. py:function:: gds.beta.node2vec.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
109109
110110
Returns an estimation of the memory consumption for that procedure.
111111

112112
.. deprecated:: 2.5.0
113113
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.write` instead.
114114

115-
.. py:function:: gds.beta.node2vec.write(G: Graph, **config: Any) -> Series[Any]
115+
.. py:function:: gds.beta.node2vec.write(G: Graph, **config: Any) -> pandas.Series[Any]
116116
117117
The Node2Vec algorithm computes embeddings for nodes based on random walks.
118118

119119
.. deprecated:: 2.5.0
120120
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.node2vec.write.estimate` instead.
121121

122-
.. py:function:: gds.beta.node2vec.write.estimate(G: Graph, **config: Any) -> Series[Any]
122+
.. py:function:: gds.beta.node2vec.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
123123
124124
Returns an estimation of the memory consumption for that procedure.
125125

126-
.. py:function:: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> Series[Any]
126+
.. py:function:: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> pandas.Series[Any]
127127
128128
Drops a pipeline and frees up the resources it occupies.
129129

130130
.. deprecated:: 2.5.0
131131
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.pipeline.drop` instead.
132132

133-
.. py:function:: gds.beta.pipeline.exists(pipeline_name: str) -> Series[Any]
133+
.. py:function:: gds.beta.pipeline.exists(pipeline_name: str) -> pandas.Series[Any]
134134
135135
Checks if a given pipeline exists in the pipeline catalog.
136136

137137
.. deprecated:: 2.5.0
138138
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.pipeline.exists` instead.
139139

140-
.. py:function:: gds.beta.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> DataFrame
140+
.. py:function:: gds.beta.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> pandas.DataFrame
141141
142142
Lists all pipelines contained in the pipeline catalog.
143143

144144
.. deprecated:: 2.5.0
145145
Since GDS server version 2.5.0 you should use the endpoint :func:`gds.pipeline.list` instead.
146146

147-
.. py:function:: gds.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> Series[Any]
147+
.. py:function:: gds.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> pandas.Series[Any]
148148
149149
Drops a pipeline and frees up the resources it occupies.
150150

151-
.. py:function:: gds.pipeline.exists(pipeline_name: str) -> Series[Any]
151+
.. py:function:: gds.pipeline.exists(pipeline_name: str) -> pandas.Series[Any]
152152
153153
Checks if a given pipeline exists in the pipeline catalog.
154154

155-
.. py:function:: gds.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> DataFrame
155+
.. py:function:: gds.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> pandas.DataFrame
156156
157157
Lists all pipelines contained in the pipeline catalog.
158158

159-
.. py:function:: gds.beta.pipeline.linkPrediction.create(name: str) -> Tuple[LPTrainingPipeline, Series[Any]]
159+
.. py:function:: gds.beta.pipeline.linkPrediction.create(name: str) -> Tuple[LPTrainingPipeline, pandas.Series[Any]]
160160
161161
Creates a link prediction pipeline in the pipeline catalog.
162162

163-
.. py:function:: gds.beta.pipeline.nodeClassification.create(name: str) -> Tuple[NCTrainingPipeline, Series[Any]]
163+
.. py:function:: gds.beta.pipeline.nodeClassification.create(name: str) -> Tuple[NCTrainingPipeline, pandas.Series[Any]]
164164
165165
Creates a node classification training pipeline in the pipeline catalog.
166166

167-
.. py:function:: gds.fastRP.mutate(G: Graph, **config: Any) -> Series[Any]
167+
.. py:function:: gds.fastRP.mutate(G: Graph, **config: Any) -> pandas.Series[Any]
168168
169169
Random Projection produces node embeddings via the fastrp algorithm
170170

171-
.. py:function:: gds.fastRP.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
171+
.. py:function:: gds.fastRP.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
172172
173173
Random Projection produces node embeddings via the fastrp algorithm
174174

175-
.. py:function:: gds.fastRP.stats(G: Graph, **config: Any) -> Series[Any]
175+
.. py:function:: gds.fastRP.stats(G: Graph, **config: Any) -> pandas.Series[Any]
176176
177177
Random Projection produces node embeddings via the fastrp algorithm
178178

179-
.. py:function:: gds.fastRP.stats.estimate(G: Graph, **config: Any) -> Series[Any]
179+
.. py:function:: gds.fastRP.stats.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
180180
181181
Random Projection produces node embeddings via the fastrp algorithm
182182

183-
.. py:function:: gds.fastRP.stream(G: Graph, **config: Any) -> DataFrame
183+
.. py:function:: gds.fastRP.stream(G: Graph, **config: Any) -> pandas.DataFrame
184184
185185
Random Projection produces node embeddings via the fastrp algorithm
186186

187-
.. py:function:: gds.fastRP.stream.estimate(G: Graph, **config: Any) -> Series[Any]
187+
.. py:function:: gds.fastRP.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
188188
189189
Random Projection produces node embeddings via the fastrp algorithm
190190

191-
.. py:function:: gds.fastRP.write(G: Graph, **config: Any) -> Series[Any]
191+
.. py:function:: gds.fastRP.write(G: Graph, **config: Any) -> pandas.Series[Any]
192192
193193
Random Projection produces node embeddings via the fastrp algorithm
194194

195-
.. py:function:: gds.fastRP.write.estimate(G: Graph, **config: Any) -> Series[Any]
195+
.. py:function:: gds.fastRP.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
196196
197197
Random Projection produces node embeddings via the fastrp algorithm
198198

199199
.. py:function:: gds.alpha.ml.oneHotEncoding(available_values: List[Any], selected_values: List[Any]) -> List[int]
200200
201201
Return a list of selected values in a one hot encoding format.
202202

203-
.. py:function:: gds.hashgnn.mutate(G: Graph, **config: Any) -> Series[Any]
203+
.. py:function:: gds.hashgnn.mutate(G: Graph, **config: Any) -> pandas.Series[Any]
204204
205205
HashGNN creates node embeddings by hashing and message passing.
206206

207-
.. py:function:: gds.hashgnn.mutate.estimate(G: Graph, **config: Any) -> DataFrame
207+
.. py:function:: gds.hashgnn.mutate.estimate(G: Graph, **config: Any) -> pandas.DataFrame
208208
209209
Returns an estimation of the memory consumption for that procedure.
210210

211-
.. py:function:: gds.hashgnn.stream(G: Graph, **config: Any) -> DataFrame
211+
.. py:function:: gds.hashgnn.stream(G: Graph, **config: Any) -> pandas.DataFrame
212212
213213
HashGNN creates node embeddings by hashing and message passing.
214214

215-
.. py:function:: gds.hashgnn.stream.estimate(G: Graph, **config: Any) -> DataFrame
215+
.. py:function:: gds.hashgnn.stream.estimate(G: Graph, **config: Any) -> pandas.DataFrame
216216
217217
Returns an estimation of the memory consumption for that procedure.
218218

219-
.. py:function:: gds.hashgnn.write(G: Graph, **config: Any) -> DataFrame
219+
.. py:function:: gds.hashgnn.write(G: Graph, **config: Any) -> pandas.DataFrame
220220
221221
HashGNN creates node embeddings by hashing and message passing.
222222

223-
.. py:function:: gds.hashgnn.write.estimate(G: Graph, **config: Any) -> DataFrame
223+
.. py:function:: gds.hashgnn.write.estimate(G: Graph, **config: Any) -> pandas.DataFrame
224224
225225
Returns an estimation of the memory consumption for that procedure.
226226

227-
.. py:function:: gds.node2vec.mutate(G: Graph, **config: Any) -> Series[Any]
227+
.. py:function:: gds.node2vec.mutate(G: Graph, **config: Any) -> pandas.Series[Any]
228228
229229
The Node2Vec algorithm computes embeddings for nodes based on random walks.
230230

231-
.. py:function:: gds.node2vec.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
231+
.. py:function:: gds.node2vec.mutate.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
232232
233233
Returns an estimation of the memory consumption for that procedure.
234234

235-
.. py:function:: gds.node2vec.stream(G: Graph, **config: Any) -> DataFrame
235+
.. py:function:: gds.node2vec.stream(G: Graph, **config: Any) -> pandas.DataFrame
236236
237237
The Node2Vec algorithm computes embeddings for nodes based on random walks.
238238

239-
.. py:function:: gds.node2vec.stream.estimate(G: Graph, **config: Any) -> Series[Any]
239+
.. py:function:: gds.node2vec.stream.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
240240
241241
Returns an estimation of the memory consumption for that procedure.
242242

243-
.. py:function:: gds.node2vec.write(G: Graph, **config: Any) -> Series[Any]
243+
.. py:function:: gds.node2vec.write(G: Graph, **config: Any) -> pandas.Series[Any]
244244
245245
The Node2Vec algorithm computes embeddings for nodes based on random walks.
246246

247-
.. py:function:: gds.node2vec.write.estimate(G: Graph, **config: Any) -> Series[Any]
247+
.. py:function:: gds.node2vec.write.estimate(G: Graph, **config: Any) -> pandas.Series[Any]
248248
249249
Returns an estimation of the memory consumption for that procedure.

0 commit comments

Comments
 (0)