@@ -9,241 +9,241 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
99
1010 Get a pipeline object representing a pipeline in the Pipeline Catalog.
1111
12- .. py :function :: gds.alpha.ml.splitRelationships.mutate(G: Graph, ** config: Any) -> Series[Any]
12+ .. py :function :: gds.alpha.ml.splitRelationships.mutate(G: Graph, ** config: Any) -> pandas. Series[Any]
1313
1414 Splits a graph into holdout and remaining relationship types and adds them to the graph.
1515
16- .. py :function :: gds.alpha.ml.splitRelationships.mutate.estimate(G: Graph, ** config: Any) -> Series[Any]
16+ .. py :function :: gds.alpha.ml.splitRelationships.mutate.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
1717
1818 Splits a graph into holdout and remaining relationship types and adds them to the graph.
1919
20- .. py :function :: gds.alpha.pipeline.nodeRegression.create(name: str ) -> Tuple[NRTrainingPipeline, Series[Any]]
20+ .. py :function :: gds.alpha.pipeline.nodeRegression.create(name: str ) -> Tuple[NRTrainingPipeline, pandas. Series[Any]]
2121
2222 Creates a node regression training pipeline in the pipeline catalog.
2323
24- .. py :function :: gds.beta.graphSage.mutate(G: Graph, ** config: Any) -> Series[Any]
24+ .. py :function :: gds.beta.graphSage.mutate(G: Graph, ** config: Any) -> pandas. Series[Any]
2525
2626 The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
2727
28- .. py :function :: gds.beta.graphSage.mutate.estimate(G: Graph, ** config: Any) -> Series[Any]
28+ .. py :function :: gds.beta.graphSage.mutate.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
2929
3030 The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
3131
32- .. py :function :: gds.beta.graphSage.stream(G: Graph, ** config: Any) -> DataFrame
32+ .. py :function :: gds.beta.graphSage.stream(G: Graph, ** config: Any) -> pandas. DataFrame
3333
3434 The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
3535
36- .. py :function :: gds.beta.graphSage.stream.estimate(G: Graph, ** config: Any) -> Series[Any]
36+ .. py :function :: gds.beta.graphSage.stream.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
3737
3838 Returns an estimation of the memory consumption for that procedure.
3939
40- .. py :function :: gds.beta.graphSage.train(G: Graph, ** config: Any) -> Tuple[MODEL_TYPE , Series[Any]]
40+ .. py :function :: gds.beta.graphSage.train(G: Graph, ** config: Any) -> Tuple[MODEL_TYPE , pandas. Series[Any]]
4141
4242 The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
4343
44- .. py :function :: gds.beta.graphSage.train.estimate(G: Graph, ** config: Any) -> Series[Any]
44+ .. py :function :: gds.beta.graphSage.train.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
4545
4646 Returns an estimation of the memory consumption for that procedure.
4747
48- .. py :function :: gds.beta.graphSage.write(G: Graph, ** config: Any) -> Series[Any]
48+ .. py :function :: gds.beta.graphSage.write(G: Graph, ** config: Any) -> pandas. Series[Any]
4949
5050 The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
5151
52- .. py :function :: gds.beta.graphSage.write.estimate(G: Graph, ** config: Any) -> Series[Any]
52+ .. py :function :: gds.beta.graphSage.write.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
5353
5454 Returns an estimation of the memory consumption for that procedure.
5555
5656.. deprecated :: 2.5.0
5757 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.hashgnn.mutate ` instead.
5858
59- .. py :function :: gds.beta.hashgnn.mutate(G: Graph, ** config: Any) -> Series[Any]
59+ .. py :function :: gds.beta.hashgnn.mutate(G: Graph, ** config: Any) -> pandas. Series[Any]
6060
6161 HashGNN creates node embeddings by hashing and message passing.
6262
6363.. deprecated :: 2.5.0
6464 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.hashgnn.mutate.estimate ` instead.
6565
66- .. py :function :: gds.beta.hashgnn.mutate.estimate(G: Graph, ** config: Any) -> Series[Any]
66+ .. py :function :: gds.beta.hashgnn.mutate.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
6767
6868 HashGNN creates node embeddings by hashing and message passing.
6969
7070.. deprecated :: 2.5.0
7171 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.hashgnn.stream ` instead.
7272
73- .. py :function :: gds.beta.hashgnn.stream(G: Graph, ** config: Any) -> DataFrame
73+ .. py :function :: gds.beta.hashgnn.stream(G: Graph, ** config: Any) -> pandas. DataFrame
7474
7575 HashGNN creates node embeddings by hashing and message passing.
7676
7777.. deprecated :: 2.5.0
7878 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.hashgnn.stream.estimate ` instead.
7979
80- .. py :function :: gds.beta.hashgnn.stream.estimate(G: Graph, ** config: Any) -> Series[Any]
80+ .. py :function :: gds.beta.hashgnn.stream.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
8181
8282 HashGNN creates node embeddings by hashing and message passing.
8383
8484.. deprecated :: 2.5.0
8585 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.node2vec.mutate ` instead.
8686
87- .. py :function :: gds.beta.node2vec.mutate(G: Graph, ** config: Any) -> Series[Any]
87+ .. py :function :: gds.beta.node2vec.mutate(G: Graph, ** config: Any) -> pandas. Series[Any]
8888
8989 The Node2Vec algorithm computes embeddings for nodes based on random walks.
9090
9191.. deprecated :: 2.5.0
9292 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.node2vec.mutate.estimate ` instead.
9393
94- .. py :function :: gds.beta.node2vec.mutate.estimate(G: Graph, ** config: Any) -> Series[Any]
94+ .. py :function :: gds.beta.node2vec.mutate.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
9595
9696 Returns an estimation of the memory consumption for that procedure.
9797
9898.. deprecated :: 2.5.0
9999 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.node2vec.stream ` instead.
100100
101- .. py :function :: gds.beta.node2vec.stream(G: Graph, ** config: Any) -> DataFrame
101+ .. py :function :: gds.beta.node2vec.stream(G: Graph, ** config: Any) -> pandas. DataFrame
102102
103103 The Node2Vec algorithm computes embeddings for nodes based on random walks.
104104
105105.. deprecated :: 2.5.0
106106 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.node2vec.stream.estimate ` instead.
107107
108- .. py :function :: gds.beta.node2vec.stream.estimate(G: Graph, ** config: Any) -> Series[Any]
108+ .. py :function :: gds.beta.node2vec.stream.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
109109
110110 Returns an estimation of the memory consumption for that procedure.
111111
112112.. deprecated :: 2.5.0
113113 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.node2vec.write ` instead.
114114
115- .. py :function :: gds.beta.node2vec.write(G: Graph, ** config: Any) -> Series[Any]
115+ .. py :function :: gds.beta.node2vec.write(G: Graph, ** config: Any) -> pandas. Series[Any]
116116
117117 The Node2Vec algorithm computes embeddings for nodes based on random walks.
118118
119119.. deprecated :: 2.5.0
120120 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.node2vec.write.estimate ` instead.
121121
122- .. py :function :: gds.beta.node2vec.write.estimate(G: Graph, ** config: Any) -> Series[Any]
122+ .. py :function :: gds.beta.node2vec.write.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
123123
124124 Returns an estimation of the memory consumption for that procedure.
125125
126- .. py :function :: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> Series[Any]
126+ .. py :function :: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> pandas. Series[Any]
127127
128128 Drops a pipeline and frees up the resources it occupies.
129129
130130.. deprecated :: 2.5.0
131131 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.pipeline.drop ` instead.
132132
133- .. py :function :: gds.beta.pipeline.exists(pipeline_name: str ) -> Series[Any]
133+ .. py :function :: gds.beta.pipeline.exists(pipeline_name: str ) -> pandas. Series[Any]
134134
135135 Checks if a given pipeline exists in the pipeline catalog.
136136
137137.. deprecated :: 2.5.0
138138 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.pipeline.exists ` instead.
139139
140- .. py :function :: gds.beta.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None ) -> DataFrame
140+ .. py :function :: gds.beta.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None ) -> pandas. DataFrame
141141
142142 Lists all pipelines contained in the pipeline catalog.
143143
144144.. deprecated :: 2.5.0
145145 Since GDS server version 2.5.0 you should use the endpoint :func: `gds.pipeline.list ` instead.
146146
147- .. py :function :: gds.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> Series[Any]
147+ .. py :function :: gds.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> pandas. Series[Any]
148148
149149 Drops a pipeline and frees up the resources it occupies.
150150
151- .. py :function :: gds.pipeline.exists(pipeline_name: str ) -> Series[Any]
151+ .. py :function :: gds.pipeline.exists(pipeline_name: str ) -> pandas. Series[Any]
152152
153153 Checks if a given pipeline exists in the pipeline catalog.
154154
155- .. py :function :: gds.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None ) -> DataFrame
155+ .. py :function :: gds.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None ) -> pandas. DataFrame
156156
157157 Lists all pipelines contained in the pipeline catalog.
158158
159- .. py :function :: gds.beta.pipeline.linkPrediction.create(name: str ) -> Tuple[LPTrainingPipeline, Series[Any]]
159+ .. py :function :: gds.beta.pipeline.linkPrediction.create(name: str ) -> Tuple[LPTrainingPipeline, pandas. Series[Any]]
160160
161161 Creates a link prediction pipeline in the pipeline catalog.
162162
163- .. py :function :: gds.beta.pipeline.nodeClassification.create(name: str ) -> Tuple[NCTrainingPipeline, Series[Any]]
163+ .. py :function :: gds.beta.pipeline.nodeClassification.create(name: str ) -> Tuple[NCTrainingPipeline, pandas. Series[Any]]
164164
165165 Creates a node classification training pipeline in the pipeline catalog.
166166
167- .. py :function :: gds.fastRP.mutate(G: Graph, ** config: Any) -> Series[Any]
167+ .. py :function :: gds.fastRP.mutate(G: Graph, ** config: Any) -> pandas. Series[Any]
168168
169169 Random Projection produces node embeddings via the fastrp algorithm
170170
171- .. py :function :: gds.fastRP.mutate.estimate(G: Graph, ** config: Any) -> Series[Any]
171+ .. py :function :: gds.fastRP.mutate.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
172172
173173 Random Projection produces node embeddings via the fastrp algorithm
174174
175- .. py :function :: gds.fastRP.stats(G: Graph, ** config: Any) -> Series[Any]
175+ .. py :function :: gds.fastRP.stats(G: Graph, ** config: Any) -> pandas. Series[Any]
176176
177177 Random Projection produces node embeddings via the fastrp algorithm
178178
179- .. py :function :: gds.fastRP.stats.estimate(G: Graph, ** config: Any) -> Series[Any]
179+ .. py :function :: gds.fastRP.stats.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
180180
181181 Random Projection produces node embeddings via the fastrp algorithm
182182
183- .. py :function :: gds.fastRP.stream(G: Graph, ** config: Any) -> DataFrame
183+ .. py :function :: gds.fastRP.stream(G: Graph, ** config: Any) -> pandas. DataFrame
184184
185185 Random Projection produces node embeddings via the fastrp algorithm
186186
187- .. py :function :: gds.fastRP.stream.estimate(G: Graph, ** config: Any) -> Series[Any]
187+ .. py :function :: gds.fastRP.stream.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
188188
189189 Random Projection produces node embeddings via the fastrp algorithm
190190
191- .. py :function :: gds.fastRP.write(G: Graph, ** config: Any) -> Series[Any]
191+ .. py :function :: gds.fastRP.write(G: Graph, ** config: Any) -> pandas. Series[Any]
192192
193193 Random Projection produces node embeddings via the fastrp algorithm
194194
195- .. py :function :: gds.fastRP.write.estimate(G: Graph, ** config: Any) -> Series[Any]
195+ .. py :function :: gds.fastRP.write.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
196196
197197 Random Projection produces node embeddings via the fastrp algorithm
198198
199199.. py :function :: gds.alpha.ml.oneHotEncoding(available_values: List[Any], selected_values: List[Any]) -> List[int ]
200200
201201 Return a list of selected values in a one hot encoding format.
202202
203- .. py :function :: gds.hashgnn.mutate(G: Graph, ** config: Any) -> Series[Any]
203+ .. py :function :: gds.hashgnn.mutate(G: Graph, ** config: Any) -> pandas. Series[Any]
204204
205205 HashGNN creates node embeddings by hashing and message passing.
206206
207- .. py :function :: gds.hashgnn.mutate.estimate(G: Graph, ** config: Any) -> DataFrame
207+ .. py :function :: gds.hashgnn.mutate.estimate(G: Graph, ** config: Any) -> pandas. DataFrame
208208
209209 Returns an estimation of the memory consumption for that procedure.
210210
211- .. py :function :: gds.hashgnn.stream(G: Graph, ** config: Any) -> DataFrame
211+ .. py :function :: gds.hashgnn.stream(G: Graph, ** config: Any) -> pandas. DataFrame
212212
213213 HashGNN creates node embeddings by hashing and message passing.
214214
215- .. py :function :: gds.hashgnn.stream.estimate(G: Graph, ** config: Any) -> DataFrame
215+ .. py :function :: gds.hashgnn.stream.estimate(G: Graph, ** config: Any) -> pandas. DataFrame
216216
217217 Returns an estimation of the memory consumption for that procedure.
218218
219- .. py :function :: gds.hashgnn.write(G: Graph, ** config: Any) -> DataFrame
219+ .. py :function :: gds.hashgnn.write(G: Graph, ** config: Any) -> pandas. DataFrame
220220
221221 HashGNN creates node embeddings by hashing and message passing.
222222
223- .. py :function :: gds.hashgnn.write.estimate(G: Graph, ** config: Any) -> DataFrame
223+ .. py :function :: gds.hashgnn.write.estimate(G: Graph, ** config: Any) -> pandas. DataFrame
224224
225225 Returns an estimation of the memory consumption for that procedure.
226226
227- .. py :function :: gds.node2vec.mutate(G: Graph, ** config: Any) -> Series[Any]
227+ .. py :function :: gds.node2vec.mutate(G: Graph, ** config: Any) -> pandas. Series[Any]
228228
229229 The Node2Vec algorithm computes embeddings for nodes based on random walks.
230230
231- .. py :function :: gds.node2vec.mutate.estimate(G: Graph, ** config: Any) -> Series[Any]
231+ .. py :function :: gds.node2vec.mutate.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
232232
233233 Returns an estimation of the memory consumption for that procedure.
234234
235- .. py :function :: gds.node2vec.stream(G: Graph, ** config: Any) -> DataFrame
235+ .. py :function :: gds.node2vec.stream(G: Graph, ** config: Any) -> pandas. DataFrame
236236
237237 The Node2Vec algorithm computes embeddings for nodes based on random walks.
238238
239- .. py :function :: gds.node2vec.stream.estimate(G: Graph, ** config: Any) -> Series[Any]
239+ .. py :function :: gds.node2vec.stream.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
240240
241241 Returns an estimation of the memory consumption for that procedure.
242242
243- .. py :function :: gds.node2vec.write(G: Graph, ** config: Any) -> Series[Any]
243+ .. py :function :: gds.node2vec.write(G: Graph, ** config: Any) -> pandas. Series[Any]
244244
245245 The Node2Vec algorithm computes embeddings for nodes based on random walks.
246246
247- .. py :function :: gds.node2vec.write.estimate(G: Graph, ** config: Any) -> Series[Any]
247+ .. py :function :: gds.node2vec.write.estimate(G: Graph, ** config: Any) -> pandas. Series[Any]
248248
249249 Returns an estimation of the memory consumption for that procedure.
0 commit comments