|
| 1 | +# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 2 | +# |
| 3 | +# This source code is licensed under the BSD license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | + |
| 6 | +""" |
| 7 | +Tests for activation checkpointing functionality. |
| 8 | +""" |
| 9 | + |
| 10 | +import pytest |
| 11 | +import torch |
| 12 | +from torch.utils.checkpoint import CheckpointPolicy |
| 13 | + |
| 14 | +from autoparallel._testing.models.llama3 import Transformer, TransformerModelArgs |
| 15 | +from autoparallel.activation_checkpointing import _apply_ac_policy |
| 16 | + |
| 17 | + |
| 18 | +@pytest.fixture(scope="module") |
| 19 | +def llama3_model(): |
| 20 | + """Create a small Llama3 model for testing.""" |
| 21 | + torch.manual_seed(1999) |
| 22 | + model_args = TransformerModelArgs( |
| 23 | + dim=64, n_layers=2, n_heads=4, vocab_size=256, rope_theta=500000 |
| 24 | + ) |
| 25 | + return Transformer(model_args) |
| 26 | + |
| 27 | + |
| 28 | +def create_joint_graph_from_model(model, input_args): |
| 29 | + """Create a joint graph from a model for testing activation checkpointing functions.""" |
| 30 | + from torch._subclasses.fake_tensor import FakeTensorMode |
| 31 | + from torch.fx.experimental.proxy_tensor import make_fx |
| 32 | + |
| 33 | + def simple_fwd_fn(*inputs): |
| 34 | + return model(*inputs) |
| 35 | + |
| 36 | + # Create fake tensor mode with consistent device handling |
| 37 | + with FakeTensorMode(allow_non_fake_inputs=True) as fake_mode: |
| 38 | + # Create fake inputs that match the input structure |
| 39 | + fake_input_args = tuple(fake_mode.from_tensor(arg) for arg in input_args) |
| 40 | + |
| 41 | + # Create a simple forward graph first |
| 42 | + fwd_graph = make_fx(simple_fwd_fn)(*fake_input_args) |
| 43 | + |
| 44 | + # Create a mock joint graph with forward and backward sections |
| 45 | + joint_graph = torch.fx.Graph() |
| 46 | + |
| 47 | + # Copy forward nodes |
| 48 | + value_remap = {} |
| 49 | + for node in fwd_graph.graph.nodes: |
| 50 | + if node.op == "placeholder": |
| 51 | + new_node = joint_graph.placeholder(node.target) |
| 52 | + new_node.meta.update(node.meta) |
| 53 | + value_remap[node] = new_node |
| 54 | + elif node.op == "call_function": |
| 55 | + new_args = tuple(value_remap.get(arg, arg) for arg in node.args) |
| 56 | + new_node = joint_graph.call_function(node.target, new_args, node.kwargs) |
| 57 | + new_node.meta.update(node.meta) |
| 58 | + value_remap[node] = new_node |
| 59 | + elif node.op == "output": |
| 60 | + # Add backward nodes just manually for testing purpose(marked as backward) |
| 61 | + output_node = value_remap[node.args[0]] |
| 62 | + |
| 63 | + # Add a sum operation for loss |
| 64 | + sum_node = joint_graph.call_function( |
| 65 | + torch.ops.aten.sum.default, (output_node,) |
| 66 | + ) |
| 67 | + sum_node.meta["val"] = torch.tensor(1.0) |
| 68 | + |
| 69 | + # Add backward nodes |
| 70 | + bw_node = joint_graph.call_function( |
| 71 | + torch.ops.aten.mul.Tensor, (sum_node, 1.0) |
| 72 | + ) |
| 73 | + bw_node.meta["partitioner_tag"] = "is_backward" |
| 74 | + bw_node.meta["val"] = torch.tensor(1.0) |
| 75 | + |
| 76 | + # Add tangent placeholder |
| 77 | + tangent_node = joint_graph.placeholder("tangents_1") |
| 78 | + tangent_node.meta["val"] = output_node.meta.get( |
| 79 | + "val", torch.randn(2, 8, 64) |
| 80 | + ) |
| 81 | + |
| 82 | + # Create output |
| 83 | + joint_graph.output([output_node, bw_node]) |
| 84 | + break |
| 85 | + |
| 86 | + return joint_graph |
| 87 | + |
| 88 | + |
| 89 | +def create_joint_graph_llama3(llama3_model): |
| 90 | + """Create a joint graph from Llama3 model.""" |
| 91 | + batch_size = 2 |
| 92 | + seq_len = 8 |
| 93 | + vocab_size = llama3_model.model_args.vocab_size |
| 94 | + |
| 95 | + input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), dtype=torch.long) |
| 96 | + return create_joint_graph_from_model(llama3_model, (input_ids,)) |
| 97 | + |
| 98 | + |
| 99 | +class TestACPolicy: |
| 100 | + """Test AC policy application.""" |
| 101 | + |
| 102 | + def test_apply_ac_policy(self, llama3_model): |
| 103 | + """Test _apply_ac_policy function.""" |
| 104 | + graph = create_joint_graph_llama3(llama3_model) |
| 105 | + |
| 106 | + # Define save list with operations that might be in the graph |
| 107 | + save_list = { |
| 108 | + torch.ops.aten.mm.default, |
| 109 | + torch.ops.aten.addmm.default, |
| 110 | + } |
| 111 | + |
| 112 | + _apply_ac_policy(graph, save_list) |
| 113 | + |
| 114 | + marked_nodes_to_save = [ |
| 115 | + node |
| 116 | + for node in graph.nodes |
| 117 | + if node.meta.get("recompute") == CheckpointPolicy.MUST_SAVE |
| 118 | + ] |
| 119 | + |
| 120 | + # Count total mm.default nodes in the graph to verify every-other-node policy |
| 121 | + total_mm_nodes = len( |
| 122 | + [node for node in graph.nodes if node.target == torch.ops.aten.mm.default] |
| 123 | + ) |
| 124 | + |
| 125 | + # The policy should save every other mm.default node |
| 126 | + expected_saved_nodes = ( |
| 127 | + total_mm_nodes + 1 |
| 128 | + ) // 2 # ceiling division for odd counts |
| 129 | + |
| 130 | + # Verify the every-other-node policy is working correctly |
| 131 | + assert ( |
| 132 | + len(marked_nodes_to_save) == expected_saved_nodes |
| 133 | + ), f"Expected {expected_saved_nodes} nodes to be saved, but got {len(marked_nodes_to_save)}" |
0 commit comments