diff --git a/reals_stdlib/Rstruct.v b/reals_stdlib/Rstruct.v index ec34553cf..7fda64acc 100644 --- a/reals_stdlib/Rstruct.v +++ b/reals_stdlib/Rstruct.v @@ -1,3 +1,21 @@ +(* see below (after doc) for copyright notice *) +From Coq Require Import ZArith Rdefinitions Raxioms RIneq Rbasic_fun Zwf. +From Coq Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def. +From Coq Require Import Rtrigo1 Reals. +From HB Require Import structures. +From mathcomp Require Import all_ssreflect ssralg poly ssrnum archimedean. + + +(**md**************************************************************************) +(* # Compatibility with the real numbers of Coq *) +(* *) +(* This essentially builds an instance of realType for the R type from the *) +(* Stdlib library. This enable to specialize all proofs on realType (that is *) +(* many thing in the Analysis library) to the real numbers of Stdlib. To this *) +(* end, one can use tactics like `apply: RleP` or `rewrite !(RplusE, RmultE)` *) +(* (see below for more compatibility lemmas). *) +(******************************************************************************) + (* This file is a modification of an eponymous file from the CoqApprox *) (* library. The header of the original file is reproduced below. Changes are *) (* part of the analysis library and enjoy the same licence as this library. *) @@ -21,16 +39,6 @@ the economic rights, and the successive licensors have only limited liability. See the COPYING file for more details. *) -(**md**************************************************************************) -(* # Compatibility with the real numbers of Coq *) -(******************************************************************************) - -From Coq Require Import ZArith Rdefinitions Raxioms RIneq Rbasic_fun Zwf. -From Coq Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def. -From Coq Require Import Rtrigo1 Reals. -From HB Require Import structures. -From mathcomp Require Import all_ssreflect ssralg poly ssrnum archimedean. - Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive.