@@ -894,7 +894,7 @@ static int test_mp_prime_rand(void)
894894
895895 /* test for size */
896896 for (ix = 10; ix < 128; ix++) {
897- printf("Testing (not safe-prime): %9d bits \n ", ix);
897+ printf("\rTesting (not safe-prime): %9d bits ", ix);
898898 fflush(stdout);
899899 DO(mp_prime_rand(&a, 8, ix, (rand_int() & 1) ? 0 : MP_PRIME_2MSB_ON));
900900 EXPECT(mp_count_bits(&a) == ix);
@@ -907,15 +907,264 @@ static int test_mp_prime_rand(void)
907907 return EXIT_FAILURE;
908908}
909909
910+ /* Some small pseudoprimes to test the individual implementations */
911+
912+ /* Miller-Rabin base 2 */
913+ static const uint32_t SPSP_2[] = {
914+ 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799,
915+ 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751
916+ };
917+
918+ /* Miller-Rabin base 3 */
919+ static const uint32_t SPSP_3[] = {
920+ 121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
921+ 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
922+ 74593, 79003, 82513, 87913, 88573, 97567
923+ };
924+
925+ /* SPSP to all bases < 100 */
926+ static const char *SPSP_2_100_LARGE[4] = {
927+ "3L2x7YRmz7g4q+DwxESBacAClxrNiuspLCf8BUEphtky+5VNHLAb2ZZLLI0bu6cAOtNkUXenakBCCL"
928+ "Vn7gqOpkcrQ/ptxZdk+4gnI99wFjgcfM512N71ZzbwvLe+5Pzat2k+nHIjE0w/WbQvzk4a2/syAY8S"
929+ "i1B5XRjXYVAQOLyNWhsFpXeWXUgqiNzv7avfwBA3ZOXt", /* bases 2 - 100 */
930+ "JOcSIwxGqGEjeQ2GsdlnFMwhc+xY7EtZo5Kf4BglOuakxTJaP8qrdZyduXaAZUdzyPgQLf7B8vqvVE"
931+ "VLJwH7dLkLEiw19tfu3naT6DgQWzk+b5WuwWJzsTMdgWWH86M1h/Gjt2J/qABtTTH26C8bS4v/q9Fh"
932+ "R8jqHNOiufUgHkDQdW9Z+BLlf6OVVh2VwPIOGVc7kFF", /* bases 2 - 107 */
933+ "1ZCddPKHO7yeqI5ZeKG5ssTnzJeIDpWElJEZnHwejl4tsyly44JgwdiRmXgsi9FQfYhMzFZMgV6qWZZ"
934+ "sIJl4RNgpD/PDb3nam++ECkzMBuNIXVpmZzw+Gj5xQmpKK+OX8pFSy2IQiKyKAOfSaivXEb2/dga2J/"
935+ "Pc2d23lw+eP3WtBbfHc7TAQGgNI/6Xmcpl1G64eXCrJ", /* bases 2 - 103 */
936+ "cCax282DurA+2Z54W3VLKSC2mwgpilQpGydCDHvXHNRKbJQRa5NtLLfa3sXvCmUWZ9okP2ZSsPDnw0X"
937+ "dUQLzaz59vnw0rKbfsoA4nDBjMXR78Q889+KS4HFKfXkzxsiIKYo0kSfwPKYxFUi4Zj185kwwAPTAr2"
938+ "IjegdWjQLeX1ZQM0HVUUF3WEVhHXcFzF0sMiJU5hl" /* bases 2 - 101 */
939+ };
940+
941+ #ifndef LTM_USE_ONLY_MR
942+ /* Extra strong Lucas test with Baillie's parameters Q = 1, P = 3 */
943+ static const uint32_t ESLPSP[] = {
944+ 989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059, 72389,
945+ 73919, 75077, 100127, 113573, 125249, 137549, 137801, 153931, 155819,
946+ 161027, 162133, 189419, 218321, 231703, 249331, 370229, 429479, 430127,
947+ 459191, 473891, 480689, 600059, 621781, 632249, 635627
948+ };
949+
950+ /*
951+ Almost extra strong Lucas test with Baillie's parameters Q = 1, P = 3
952+ Only those that are not in ESLPSP.
953+ */
954+ static const uint32_t AESLPSP[] = {
955+ 10469, 154697, 233659, 472453, 629693, 852389, 1091093, 1560437,
956+ 1620673, 1813601, 1969109, 2415739, 2595329, 2756837, 3721549,
957+ 4269341, 5192309, 7045433, 7226669, 7265561
958+ };
959+ #endif
960+
961+ /* Some randomly choosen 200 decimal digit large primes (https://primes.utm.edu/lists/small/small2.html) */
962+ static const char *medium_primes[10] = {
963+ "C8Ckh0vviS3HUPdB1NSrSm+gOodw/f1aQ5+aaH1W6RMB0jVkO6lTaL54O3o7U5BSGUFGxm5gAvisbJamasuLZS8g3ZsJ2JM4Vtn9cQZRfkP6b8V",
964+ "64xDN9FqLBiovZ/9q/EPm0DONpIfn5MbJKHa+IjT0fjAzkg34FpAmad+CwhcpKaiTbZEpErut+DhpVyiQfqBFrgcGnGhhIrMF/XkyY3aVx6E96B",
965+ "8cyuMlENm0vh/eWwgHUpDKqmLyCSsRQZRWvbHpA2jHDZv1EhHkVhceg3OFRZn/aXRBnbdtsc2xO6sWh9KZ5Mo7u9rJgBJMVtDnu094MCExj1YvB",
966+ "BRFZFsYjSz45un8qptnuSqEsy9wV0BzbMpVAB1TrwImENOVIc1cASZNQ/mXG2xtazqgn/juVzFo91XLx9PtIlkcK0L2T6fBNgy8Lc7dSVoKQ+XP",
967+ "Ez/mDl+to2gm69+VdIHI9Q7vaO3DuIdLVT69myM3HYwVBE+G24KffAOUAp3FGrSOU+LtERMiIYIEtxPI7n/DRJtmL2i0+REwGpTMge2d2EpabfB",
968+ "5+Uz1gPFjZJ/nNdEOmOaMouJSGzygo42qz7xOwXn/moSUvBpPjo4twRGbK0+qaeU/RI8yYYxXr3OBP4w+/jgL3mN9GiENDM5LtEKMiQrZ9jIVEb",
969+ "AQ5nD1+G1grv41s/XlK+0YTGyZgr/88PzdQJ8QT9tavisTgyG6k8/80A4HQhnFndskHNAaB2EW5fE7KH3kk7m89s8JnVqkJyGZWSfs1+JlmHLPf",
970+ "3F19vPmM0Ih89KZ04Xmd62QB9F6E2sztT10A7Kcqc44eKvsNHh+JY6Z6gJXkbWg1Iw7xr29QAhEF/o1YAgfutQtpdzHkex06Yd71kPsaZdKXiC5",
971+ "2fIcJ1t/VYCColXGs+ji/txNMEXn2FXdowLzlo7QKqzAWHdAbwtltSO5qpSp3OUiEOGUUi3hbyw3iQRE8nFJaikJ89Wdox6vpPtIsc3QRjexMnv",
972+ "8aOicQ5gIbFCarFUgSgzh40LpuZ0jjK1u48/YT+C0h1dAQ8CIEgZjHZT+5/7cCRGmJlo+XCp7S41MSQ2ZNRSJh2texRYtvAXBAZfR8A8twl316P"
973+ };
974+
975+ const mp_digit prime_tab[] = {
976+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
977+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
978+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
979+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
980+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
981+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
982+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
983+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
984+
985+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
986+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
987+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
988+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
989+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
990+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
991+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
992+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
993+
994+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
995+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
996+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
997+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
998+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
999+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
1000+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
1001+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
1002+
1003+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
1004+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
1005+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
1006+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
1007+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
1008+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
1009+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
1010+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
1011+ };
1012+
1013+ #define ARR_LENGTH(a) ((int)(sizeof((a))/sizeof((a)[0])))
1014+
1015+ static int test_mp_prime_miller_rabin(void)
1016+ {
1017+ mp_int a, b, c;
1018+ bool result;
1019+ int i;
1020+ mp_digit j;
1021+ DOR(mp_init_multi(&a, &b, &c, NULL));
1022+
1023+ /* SPSP to base 2 */
1024+ mp_set(&b, 2u);
1025+ for (i = 0; i < ARR_LENGTH(SPSP_2); i++) {
1026+ result = false;
1027+ mp_set_u32(&a, SPSP_2[i]);
1028+ DO(mp_prime_miller_rabin(&a, &b, &result));
1029+ EXPECT(result == true);
1030+ }
1031+
1032+ /* Some larger primes to check for false negatives */
1033+ for (i = 0; i < 10; i++) {
1034+ result = false;
1035+ DO(mp_read_radix(&a, medium_primes[i], 64));
1036+ DO(mp_prime_miller_rabin(&a, &b, &result));
1037+ EXPECT(result == true);
1038+ }
1039+ /* Some semi-primes */
1040+ for (i = 0; i < 5; i += 2) {
1041+ result = false;
1042+ DO(mp_read_radix(&a, medium_primes[i], 64));
1043+ DO(mp_read_radix(&c, medium_primes[i+1], 64));
1044+ DO(mp_mul(&a, &c, &a));
1045+ DO(mp_prime_miller_rabin(&a, &b, &result));
1046+ EXPECT(result == false);
1047+ }
1048+
1049+ /* SPSP to base 3 */
1050+ mp_set(&b, 3u);
1051+ for (i = 0; i < ARR_LENGTH(SPSP_3); i++) {
1052+ result = false;
1053+ mp_set_u32(&a, SPSP_3[i]);
1054+ DO(mp_prime_miller_rabin(&a, &b, &result));
1055+ EXPECT(result == true);
1056+ }
1057+
1058+ /* SPSP to bases 2 -- 100 */
1059+ mp_set(&b, 2u);
1060+ for (i = 0; i < 4; i++) {
1061+ DO(mp_read_radix(&a, SPSP_2_100_LARGE[i], 64));
1062+ for (j = 2u; j <= 100u; j++) {
1063+ result = false;
1064+ mp_set(&b, j);
1065+ DO(mp_prime_miller_rabin(&a, &b, &result));
1066+ EXPECT(result == true);
1067+ }
1068+ /* 107 is a prime that works */
1069+ mp_set(&b, 107u);
1070+ DO(mp_prime_miller_rabin(&a, &b, &result));
1071+ EXPECT(result == false);
1072+ }
1073+
1074+ /* SPSP to bases 2 -- 100, automatic */
1075+ mp_set(&b, 2u);
1076+ for (i = 0; i < 4; i++) {
1077+ DO(mp_read_radix(&a, SPSP_2_100_LARGE[i], 64));
1078+ for (j = 2u; j <= (mp_digit)mp_prime_rabin_miller_trials(mp_count_bits(&a)); j++) {
1079+ result = false;
1080+ mp_set(&b, (mp_digit)prime_tab[j]);
1081+ DO(mp_prime_miller_rabin(&a, &b, &result));
1082+ }
1083+ /* These numbers are not big enough for the heuristics to work */
1084+ EXPECT(result == true);
1085+ }
1086+
1087+ mp_clear_multi(&a, &b, &c, NULL);
1088+ return EXIT_SUCCESS;
1089+ LBL_ERR:
1090+ mp_clear_multi(&a, &b, &c, NULL);
1091+ return EXIT_FAILURE;
1092+ }
1093+
1094+ #ifndef LTM_USE_ONLY_MR
1095+ static int test_mp_prime_extra_strong_lucas(void)
1096+ {
1097+ mp_int a, b;
1098+ bool result;
1099+ int i;
1100+
1101+ DOR(mp_init_multi(&a, &b, NULL));
1102+
1103+ /* Check Extra Strong pseudoprimes */
1104+ for (i = 0; i < ARR_LENGTH(ESLPSP); i++) {
1105+ result = false;
1106+ mp_set_u32(&a, ESLPSP[i]);
1107+ DO(mp_prime_extra_strong_lucas(&a, &result));
1108+ EXPECT(result == true);
1109+ }
1110+
1111+ /* Check Almost Extra Strong pseudoprimes (not in ESLPSP) */
1112+ for (i = 0; i < ARR_LENGTH(AESLPSP); i++) {
1113+ result = false;
1114+ mp_set_u32(&a, AESLPSP[i]);
1115+ DO(mp_prime_extra_strong_lucas(&a, &result));
1116+ EXPECT(result == false);
1117+ }
1118+
1119+ /* Some larger primes to check for false negatives */
1120+ for (i = 0; i < 10; i++) {
1121+ result = false;
1122+ DO(mp_read_radix(&a, medium_primes[i], 64));
1123+ DO(mp_prime_extra_strong_lucas(&a, &result));
1124+ EXPECT(result == true);
1125+ }
1126+
1127+ /* Some semi-primes */
1128+ for (i = 0; i < 5; i++) {
1129+ result = false;
1130+ DO(mp_read_radix(&a, medium_primes[i], 64));
1131+ DO(mp_read_radix(&a, medium_primes[i+1], 64));
1132+ DO(mp_mul(&a, &b, &a));
1133+ DO(mp_prime_extra_strong_lucas(&a, &result));
1134+ EXPECT(result == false);
1135+ }
1136+
1137+ mp_clear_multi(&a, &b, NULL);
1138+ return EXIT_SUCCESS;
1139+ LBL_ERR:
1140+ mp_clear_multi(&a, &b, NULL);
1141+ return EXIT_FAILURE;
1142+ }
1143+ #endif
1144+
9101145static int test_mp_prime_is_prime(void)
9111146{
9121147 int ix;
9131148 mp_err e;
914- bool cnt, fu;
1149+ bool cnt;
1150+ #ifndef LTM_USE_ONLY_MR
1151+ bool fu;
1152+ #endif
9151153
9161154 mp_int a, b;
9171155 DOR(mp_init_multi(&a, &b, NULL));
9181156
1157+ /* strong Miller-Rabin pseudoprimes to the first 100 primes (gernerated with Arnault's method) */
1158+ printf("Testing mp_prime_is_prime() with SPSPs to the first 100 primes\n");
1159+ for (ix = 0; ix < 4; ix++) {
1160+ DO(mp_read_radix(&a,SPSP_2_100_LARGE[ix],64));
1161+ DO(mp_prime_is_prime(&a, mp_prime_rabin_miller_trials(mp_count_bits(&a)), &cnt));
1162+ if (cnt) {
1163+ printf("SPSP_2_100_LARGE[%d] is not prime but mp_prime_is_prime says it is.\n", ix);
1164+ goto LBL_ERR;
1165+ }
1166+ }
1167+
9191168 /* strong Miller-Rabin pseudoprime to the first 200 primes (F. Arnault) */
9201169 printf("Testing mp_prime_is_prime() with Arnault's pseudoprime 803...901");
9211170 DO(mp_read_radix(&a,
@@ -959,6 +1208,7 @@ static int test_mp_prime_is_prime(void)
9591208 DO(mp_prime_is_prime(&b, mp_prime_rabin_miller_trials(mp_count_bits(&b)), &cnt));
9601209 /* large problem */
9611210 EXPECT(cnt);
1211+ #ifndef LTM_USE_ONLY_MR
9621212 DO(mp_prime_frobenius_underwood(&b, &fu));
9631213 EXPECT(fu);
9641214 if ((e != MP_OKAY) || !cnt) {
@@ -970,13 +1220,14 @@ static int test_mp_prime_is_prime(void)
9701220 putchar('\n');
9711221 goto LBL_ERR;
9721222 }
973-
1223+ #endif
9741224 }
1225+ #ifndef LTM_USE_ONLY_MR
9751226 /* Check regarding problem #143 */
9761227 DO(mp_read_radix(&a,
9771228 "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A3620FFFFFFFFFFFFFFFF",
9781229 16));
979- DO(mp_prime_strong_lucas_selfridge (&a, &cnt));
1230+ DO(mp_prime_extra_strong_lucas (&a, &cnt));
9801231 /* large problem */
9811232 EXPECT(cnt);
9821233 if ((e != MP_OKAY) || !cnt) {
@@ -985,6 +1236,47 @@ static int test_mp_prime_is_prime(void)
9851236 putchar('\n');
9861237 goto LBL_ERR;
9871238 }
1239+ #endif
1240+ /* Check deterministic tests */
1241+ #ifdef LTM_USE_ONLY_MR
1242+ #if ((defined S_MP_PRIME_IS_DIVISIBLE_C) && (MP_PRIME_TAB_SIZE >= 256))
1243+ /* 2-SPRP 4188889 = 431 * 9719 < 2^22 */
1244+ DO(mp_read_radix(&a,"4188889",10));
1245+ DO(mp_prime_is_prime(&a, 0, &cnt));
1246+ EXPECT(cnt == false);
1247+ /* Last prime < 2^22 */
1248+ DO(mp_read_radix(&a,"4194301",10));
1249+ DO(mp_prime_is_prime(&a, 0, &cnt));
1250+ EXPECT(cnt == true);
1251+ /* 2,3-SPRP 6787327 = 1303 * 5209 < 2^23 */
1252+ DO(mp_read_radix(&a,"6787327",10));
1253+ DO(mp_prime_is_prime(&a, 0, &cnt));
1254+ EXPECT(cnt == false);
1255+ /* Last prime < 2^23 */
1256+ DO(mp_read_radix(&a,"8388593",10));
1257+ DO(mp_prime_is_prime(&a, 0, &cnt));
1258+ EXPECT(cnt == true);
1259+
1260+ /* 2,3,1459-SPRP < 2^32*/
1261+ DO(mp_read_radix(&a,"1518290707",10));
1262+ DO(mp_prime_is_prime(&a, -1, &cnt));
1263+ EXPECT(cnt == false);
1264+ #endif
1265+ /* 2,3,7,61-SPRP < 2^43*/
1266+ DO(mp_read_radix(&a,"7038007247701",10));
1267+ DO(mp_prime_is_prime(&a, -1, &cnt));
1268+ EXPECT(cnt == false);
1269+
1270+ /* 2,325,9375,28178,450775,9780504-SPRP < 2^64
1271+ which is also a
1272+ 2,3,325,9375,28178,450775,9780504-SPRP
1273+ */
1274+ DO(mp_read_radix(&a,"18411296009130176041",10));
1275+ DO(mp_prime_is_prime(&a, -1, &cnt));
1276+ EXPECT(cnt == false);
1277+
1278+ #endif
1279+
9881280
9891281 mp_clear_multi(&a, &b, NULL);
9901282 return EXIT_SUCCESS;
@@ -2579,6 +2871,10 @@ static int unit_tests(int argc, char **argv)
25792871 T1(mp_montgomery_reduce, MP_MONTGOMERY_REDUCE),
25802872 T1(mp_root_n, MP_ROOT_N),
25812873 T1(mp_or, MP_OR),
2874+ #ifndef LTM_USE_ONLY_MR
2875+ T1(mp_prime_extra_strong_lucas, MP_PRIME_EXTRA_STRONG_LUCAS),
2876+ #endif
2877+ T1(mp_prime_miller_rabin, MP_PRIME_MILLER_RABIN),
25822878 T1(mp_prime_is_prime, MP_PRIME_IS_PRIME),
25832879 T1(mp_prime_next_prime, MP_PRIME_NEXT_PRIME),
25842880 T1(mp_prime_rand, MP_PRIME_RAND),
0 commit comments