Skip to content

Commit 421659e

Browse files
committed
Ended presentation
1 parent 474bbb3 commit 421659e

File tree

7 files changed

+87
-14
lines changed

7 files changed

+87
-14
lines changed
619 KB
Loading
400 KB
Loading

Presentation/Presentation.pdf

1.05 MB
Binary file not shown.

Presentation/Presentation.tex

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,9 +10,17 @@
1010
\usepackage{fancyvrb}
1111
\usepackage{pdfpages}
1212
\usepackage{siunitx}
13+
\usepackage{multirow}
1314
\usepackage{adjustbox}
1415
\justifying
1516

17+
\setbeamercolor{block title}{fg=black, bg=green!50!black}
18+
\setbeamercolor{block body}{fg=green!50!black, bg=green!50!black!30!white}
19+
\setbeamercolor{block title alerted}{fg=black, bg=orange!50!white}
20+
\setbeamercolor{block body alerted}{fg=orange, bg=orange!30!white}
21+
\setbeamercolor{block title example}{fg=black, bg=blue!50!white}
22+
\setbeamercolor{block body example}{fg=blue, bg=blue!30!white}
23+
1624
\title[Implementation of the PLS algorithm]{Implementation in MATLAB of the Partial Least Squares algorithm for classification}
1725
\subtitle{Case study: fault detection and diagnosis on steel plates}
1826
\author[L. Ferrari, L. Leoni]{Lorenzo Ferrari \and Lorenzo Leoni}

Presentation/Sections/Case study.tex

Lines changed: 34 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -2,14 +2,27 @@ \section{Fault detection and isolation on steel plates}
22

33
\begin{frame}
44
\frametitle{Dataset description}
5-
The steel plates faults dataset comes from research by Semeion, Research Center of Sciences of Communication. The aim of the research was to correctly classify the type of surface defects in stainless steel plates. Below is some information about the dataset:
6-
\begin{itemize}
7-
\item number of fault classes: $6 + 1$ (no faults);
8-
\item number of attributes: $27$;
9-
\item number of instances: $1941$;
10-
\item absence of missing values.
11-
\end{itemize}
12-
Unfortunately, no further details on the covariates are available.
5+
\begin{columns}
6+
\begin{column}{0.50\textwidth}
7+
\justifying
8+
The steel plates faults dataset comes from research by Semeion, Research Center of Sciences of Communication. The aim of the research was to correctly classify the type of surface defects in stainless steel plates. Some information about the dataset:
9+
\begin{itemize}
10+
\item number of fault classes: $6 + 1$ (no faults);
11+
\item number of attributes: $27$;
12+
\item number of instances: $1941$;
13+
\item absence of missing values.
14+
\end{itemize}
15+
Unfortunately, no further details on the covariates are available.
16+
\end{column}
17+
\begin{column}{0.50\textwidth}
18+
\begin{figure}
19+
\centering
20+
\includegraphics[width=0.75\textwidth]{Images/steel_plates_1.jpg}\\
21+
\vspace{0.5cm}
22+
\includegraphics[width=0.75\textwidth]{Images/steel_plates_2.jpg}
23+
\end{figure}
24+
\end{column}
25+
\end{columns}
1326
\end{frame}
1427

1528
\begin{frame}
@@ -58,7 +71,7 @@ \section{Fault detection and isolation on steel plates}
5871
\end{frame}
5972

6073
\begin{frame}
61-
\frametitle{Validation $70-30$ of the PLS2 model with $\alpha = 13$}
74+
\frametitle{Validation $70/30$ of the PLS2 model with $\alpha = 13$}
6275
\begin{figure}
6376
\begin{subfigure}[b]{0.49\textwidth}
6477
\includegraphics[width=\textwidth]{Images/confusion_all_5_PLS2.pdf}
@@ -74,22 +87,29 @@ \section{Fault detection and isolation on steel plates}
7487
\begin{frame}
7588
\frametitle{Score matrix $T$ with $\alpha = 1$, $2$ and $3$}
7689
\begin{figure}
77-
\begin{subfigure}[b]{0.49\textwidth}
90+
\begin{subfigure}[b]{0.70\textwidth}
7891
\includegraphics[width=\textwidth]{Images/scatter_T_a1_p5.pdf}
7992
\end{subfigure}
80-
\hfill
81-
\begin{subfigure}[b]{0.49\textwidth}
93+
\end{figure}
94+
\end{frame}
95+
96+
\begin{frame}
97+
\begin{figure}
98+
\begin{subfigure}[b]{0.70\textwidth}
8299
\includegraphics[width=\textwidth]{Images/scatter_T_a2_p5.pdf}
83100
\end{subfigure}
84101
\end{figure}
85102
\end{frame}
86103

87104
\begin{frame}
88105
\begin{figure}
89-
\begin{subfigure}[b]{0.60\textwidth}
106+
\begin{subfigure}[b]{0.80\textwidth}
90107
\includegraphics[width=\textwidth]{Images/scatter_T_a3_p5.pdf}
91108
\end{subfigure}
92109
\end{figure}
110+
\end{frame}
111+
112+
\begin{frame}
93113
\begin{table}
94114
\centering
95115
\renewcommand\arraystretch{1.3}
@@ -103,4 +123,5 @@ \section{Fault detection and isolation on steel plates}
103123
\hline
104124
\end{tabular}
105125
\end{table}
126+
As the order reduction $\alpha$ increases, the number of fault classes that are confused with the remaining ones decreases. In particular, we can note that the error rate related to the fault class Stains decreases substantially in the passage from $\alpha = 1$ to $\alpha = 2$; indeed, from $\mathbb{R}^2$ its subspace predominates over the subspaces of the other classes. Instead, the Dirtiness class continues to be hidden from the others for any order reduction.
106127
\end{frame}
Lines changed: 45 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,49 @@
11
\section{Conclusion}
22

33
\begin{frame}
4-
TO DO
4+
\frametitle{Comparison between PLS and PCA}
5+
\begin{table}
6+
\centering
7+
\renewcommand\arraystretch{1.3}
8+
\begin{tabular}{c|c|c}
9+
\hline
10+
& \textbf{PLS} & \textbf{PCA} \\
11+
\hline
12+
\textit{Type of technique} & Supervised & Unsupervised \\
13+
\multirow{2}{3cm}{\centering \textit{Goal}} & \multirow{2}{3cm}{\centering Regression and classification} & \multirow{2}{3cm}{\centering Feature reduction for clustering}\\
14+
& & \\
15+
\multirow{2}{3cm}{\centering \textit{Aim of the maximization}} & \multirow{2}{3cm}{\centering Covariance between $X$ and $Y$} & \multirow{2}{3cm}{\centering Variance of $X$}\\
16+
& & \\
17+
\multirow{2}{3cm}{\centering \textit{Eigenvectors orthogonality}} & \multirow{2}{3cm}{\centering Not} & \multirow{2}{3cm}{\centering Yes}\\
18+
& & \\
19+
\multirow{2}{3cm}{\centering \textit{Type of decomposition}} & \multirow{2}{3cm}{\centering NIPALS (iterative approach)} & \multirow{2}{3cm}{\centering SVD}\\
20+
& & \\
21+
\hline
22+
\end{tabular}
23+
\end{table}
24+
\end{frame}
25+
26+
\begin{frame}
27+
\begin{figure}
28+
\centering
29+
\begin{subfigure}[b]{0.60\textwidth}
30+
\includegraphics[width=\textwidth]{Images/PLS_vs_PCA.pdf}
31+
\end{subfigure}
32+
\end{figure}
33+
For the central orders PCA is slightly more accurate than PLS in the reconstruction of the matrix $X$ starting from the reduced domain. For the extreme orders, instead, the two techniques are similar.
34+
\end{frame}
35+
36+
\begin{frame}
37+
\frametitle{Bibliography}
38+
\begin{block}{Book}
39+
\textbf{Fault Detection and Diagnosis in Industrial Systems}\\
40+
L. H. Chiang, E. L. Russel and R. D. Braatz
41+
\end{block}
42+
\begin{alertblock}{Dataset}
43+
\textbf{Faulty Steel Plates}\\
44+
\small{\url{https://www.kaggle.com/datasets/uciml/faulty-steel-plates}}
45+
\end{alertblock}
46+
\begin{exampleblock}{Repository GitHub}
47+
\small{\url{https://github.com/LorenzoF6/PLS_Algorithm_Implementation.git}}
48+
\end{exampleblock}
549
\end{frame}

Scripts/Data_analysis.mlx

162 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)