Skip to content

Commit 65bcc84

Browse files
committed
Table format corrections
1 parent d971120 commit 65bcc84

File tree

1 file changed

+21
-18
lines changed

1 file changed

+21
-18
lines changed

paper/paper.md

Lines changed: 21 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -74,30 +74,33 @@ This software offer pre-trained models. This is an evolving feature as new datas
7474

7575
1. Audio type classifier to determine speech versus music: Trained SVM classifier for classifying audio into two possible classes - music, speech. This classifier was trained using MFCC, spectral and chroma features. Cross-validation confusion matrix has scores such as follows.
7676

77-
| music | speech
78-
music | 48.80 | 1.20
79-
speech | 0.60 | 49.40
77+
| | music | speech |
78+
| --- | --- | --- |
79+
| music | 48.80 | 1.20 |
80+
| speech | 0.60 | 49.40 |
8081

8182
2. Audio type classifier to determine speech versus music versus bird sounds: Trained SVM classifier that classifying audio into three possible classes - music, speech and birds. This classifier was trained using MFCC, spectral and chroma features.
8283

83-
| music | speech | birds
84-
music | 31.53 | 0.73 | 1.07
85-
speech | 1.00 | 32.33 | 0.00
86-
birds | 0.00 | 0.00 | 33.33
84+
| | music | speech | birds |
85+
| --- | --- | --- | --- |
86+
| music | 31.53 | 0.73 | 1.07 |
87+
| speech | 1.00 | 32.33 | 0.00 |
88+
| birds | 0.00 | 0.00 | 33.33 |
8789

8890
3. Music genre classifier using the GTZAN [@tzanetakis_essl_cook_2001] dataset: Trained on SVM classifier using GFCC, MFCC, spectral and chroma features to classify music into 10 genre classes - blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, rock.
8991

90-
| pop | met | dis | blu | reg | cla | rock | hip | cou | jazz
91-
pop | 7.25 | 0.00 | 0.74 | 0.38 | 0.09 | 0.09 | 0.33 | 0.60 | 0.50 | 0.04
92-
met | 0.03 | 8.74 | 0.66 | 0.09 | 0.00 | 0.00 | 0.45 | 0.00 | 0.04 | 0.00
93-
dis | 0.69 | 0.08 | 6.29 | 0.00 | 0.74 | 0.11 | 0.90 | 0.51 | 0.69 | 0.00
94-
blu | 0.00 | 0.20 | 0.00 | 8.31 | 0.25 | 0.08 | 0.44 | 0.09 | 0.30 | 0.34
95-
reg | 0.11 | 0.00 | 0.26 | 0.58 | 7.99 | 0.00 | 0.28 | 0.59 | 0.09 | 0.11
96-
cla | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.07 | 0.23 | 0.00 | 0.23 | 0.48
97-
rock | 0.14 | 0.90 | 1.10 | 0.80 | 0.35 | 0.29 | 5.31 | 0.01 | 1.09 | 0.01
98-
hip | 0.71 | 0.14 | 0.56 | 0.18 | 1.96 | 0.00 | 0.19 | 6.10 | 0.03 | 0.14
99-
cou | 0.25 | 0.15 | 0.84 | 0.64 | 0.08 | 0.10 | 1.87 | 0.00 | 5.84 | 0.24
100-
jazz | 0.04 | 0.01 | 0.13 | 0.41 | 0.00 | 0.76 | 0.31 | 0.00 | 0.53 | 7.81
92+
| | pop | met | dis | blu | reg | cla | rock | hip | cou | jazz |
93+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
94+
| pop | 7.25 | 0.00 | 0.74 | 0.38 | 0.09 | 0.09 | 0.33 | 0.60 | 0.50 | 0.04 |
95+
| met | 0.03 | 8.74 | 0.66 | 0.09 | 0.00 | 0.00 | 0.45 | 0.00 | 0.04 | 0.00 |
96+
| dis | 0.69 | 0.08 | 6.29 | 0.00 | 0.74 | 0.11 | 0.90 | 0.51 | 0.69 | 0.00 |
97+
| blu | 0.00 | 0.20 | 0.00 | 8.31 | 0.25 | 0.08 | 0.44 | 0.09 | 0.30 | 0.34 |
98+
| reg | 0.11 | 0.00 | 0.26 | 0.58 | 7.99 | 0.00 | 0.28 | 0.59 | 0.09 | 0.11 |
99+
| cla | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.07 | 0.23 | 0.00 | 0.23 | 0.48 |
100+
| rock | 0.14 | 0.90 | 1.10 | 0.80 | 0.35 | 0.29 | 5.31 | 0.01 | 1.09 | 0.01 |
101+
| hip | 0.71 | 0.14 | 0.56 | 0.18 | 1.96 | 0.00 | 0.19 | 6.10 | 0.03 | 0.14 |
102+
| cou | 0.25 | 0.15 | 0.84 | 0.64 | 0.08 | 0.10 | 1.87 | 0.00 | 5.84 | 0.24 |
103+
| jazz | 0.04 | 0.01 | 0.13 | 0.41 | 0.00 | 0.76 | 0.31 | 0.00 | 0.53 | 7.81 |
101104

102105
These baseline models aim to present capability of audio feature generation algorithms in extracting meaningful numeric patterns from the audio data. One can train their own classifiers using similar features and different machine learning backend for researching and exploring improvements.
103106

0 commit comments

Comments
 (0)