@@ -92,16 +92,16 @@ Text Embeddings Inference currently supports CamemBERT, and XLM-RoBERTa Sequence
9292
9393Below are some examples of the currently supported models:
9494
95- | Task | Model Type | Model ID | Revision |
96- | --------------------| -------------| ---------------------------------------------------------------------------------------------| ------------- |
97- | Re-Ranking | XLM-RoBERTa | [ BAAI/bge-reranker-large] ( https://huggingface.co/BAAI/bge-reranker-large ) | ` refs/pr/4 ` |
98- | Re-Ranking | XLM-RoBERTa | [ BAAI/bge-reranker-base] ( https://huggingface.co/BAAI/bge-reranker-base ) | ` refs/pr/5 ` |
99- | Sentiment Analysis | RoBERTa | [ SamLowe/roberta-base-go_emotions] ( https://huggingface.co/SamLowe/roberta-base-go_emotions ) | |
95+ | Task | Model Type | Model ID |
96+ | --------------------| -------------| ---------------------------------------------------------------------------------------------|
97+ | Re-Ranking | XLM-RoBERTa | [ BAAI/bge-reranker-large] ( https://huggingface.co/BAAI/bge-reranker-large ) |
98+ | Re-Ranking | XLM-RoBERTa | [ BAAI/bge-reranker-base] ( https://huggingface.co/BAAI/bge-reranker-base ) |
99+ | Sentiment Analysis | RoBERTa | [ SamLowe/roberta-base-go_emotions] ( https://huggingface.co/SamLowe/roberta-base-go_emotions ) |
100100
101101### Docker
102102
103103``` shell
104- model=Alibaba-NLP/gte-base -en-v1.5
104+ model=BAAI/bge-large -en-v1.5
105105volume=$PWD /data # share a volume with the Docker container to avoid downloading weights every run
106106
107107docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
@@ -382,10 +382,9 @@ downstream performance.
382382
383383``` shell
384384model=BAAI/bge-reranker-large
385- revision=refs/pr/4
386385volume=$PWD /data # share a volume with the Docker container to avoid downloading weights every run
387386
388- docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model --revision $revision
387+ docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
389388```
390389
391390And then you can rank the similarity between a query and a list of texts with:
@@ -451,7 +450,7 @@ found [here](https://github.com/huggingface/text-embeddings-inference/blob/main/
451450You can use the gRPC API by adding the ` -grpc ` tag to any TEI Docker image. For example:
452451
453452``` shell
454- model=Alibaba-NLP/gte-base -en-v1.5
453+ model=BAAI/bge-large -en-v1.5
455454volume=$PWD /data # share a volume with the Docker container to avoid downloading weights every run
456455
457456docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4-grpc --model-id $model
@@ -485,7 +484,7 @@ cargo install --path router -F metal
485484You can now launch Text Embeddings Inference on CPU with:
486485
487486``` shell
488- model=Alibaba-NLP/gte-base -en-v1.5
487+ model=BAAI/bge-large -en-v1.5
489488
490489text-embeddings-router --model-id $model --port 8080
491490```
@@ -523,7 +522,7 @@ cargo install --path router -F candle-cuda -F http --no-default-features
523522You can now launch Text Embeddings Inference on GPU with:
524523
525524``` shell
526- model=Alibaba-NLP/gte-base -en-v1.5
525+ model=BAAI/bge-large -en-v1.5
527526
528527text-embeddings-router --model-id $model --port 8080
529528```
0 commit comments