@@ -72,8 +72,15 @@ def _cfg(url='', **kwargs):
7272 'efficientnet_b2' : _cfg (
7373 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth' ,
7474 input_size = (3 , 260 , 260 ), pool_size = (9 , 9 )),
75+ 'efficientnet_b2a' : _cfg (
76+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth' ,
77+ input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), crop_pct = 1.0 ),
7578 'efficientnet_b3' : _cfg (
76- url = '' , input_size = (3 , 300 , 300 ), pool_size = (10 , 10 ), crop_pct = 0.904 ),
79+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra-a5e2fbc7.pth' ,
80+ input_size = (3 , 300 , 300 ), pool_size = (10 , 10 ), crop_pct = 0.904 ),
81+ 'efficientnet_b3a' : _cfg (
82+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra-a5e2fbc7.pth' ,
83+ input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), crop_pct = 1.0 ),
7784 'efficientnet_b4' : _cfg (
7885 url = '' , input_size = (3 , 380 , 380 ), pool_size = (12 , 12 ), crop_pct = 0.922 ),
7986 'efficientnet_b5' : _cfg (
@@ -855,6 +862,15 @@ def efficientnet_b2(pretrained=False, **kwargs):
855862 return model
856863
857864
865+ @register_model
866+ def efficientnet_b2a (pretrained = False , ** kwargs ):
867+ """ EfficientNet-B2 @ 288x288 w/ 1.0 test crop"""
868+ # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
869+ model = _gen_efficientnet (
870+ 'efficientnet_b2a' , channel_multiplier = 1.1 , depth_multiplier = 1.2 , pretrained = pretrained , ** kwargs )
871+ return model
872+
873+
858874@register_model
859875def efficientnet_b3 (pretrained = False , ** kwargs ):
860876 """ EfficientNet-B3 """
@@ -864,6 +880,15 @@ def efficientnet_b3(pretrained=False, **kwargs):
864880 return model
865881
866882
883+ @register_model
884+ def efficientnet_b3a (pretrained = False , ** kwargs ):
885+ """ EfficientNet-B3 @ 320x320 w/ 1.0 test crop-pct """
886+ # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
887+ model = _gen_efficientnet (
888+ 'efficientnet_b3a' , channel_multiplier = 1.2 , depth_multiplier = 1.4 , pretrained = pretrained , ** kwargs )
889+ return model
890+
891+
867892@register_model
868893def efficientnet_b4 (pretrained = False , ** kwargs ):
869894 """ EfficientNet-B4 """
0 commit comments