@@ -845,8 +845,7 @@ def spnasnet_100(pretrained=False, **kwargs):
845845@register_model
846846def efficientnet_b0 (pretrained = False , ** kwargs ):
847847 """ EfficientNet-B0 """
848- # NOTE for train, drop_rate should be 0.2
849- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
848+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
850849 model = _gen_efficientnet (
851850 'efficientnet_b0' , channel_multiplier = 1.0 , depth_multiplier = 1.0 , pretrained = pretrained , ** kwargs )
852851 return model
@@ -855,8 +854,7 @@ def efficientnet_b0(pretrained=False, **kwargs):
855854@register_model
856855def efficientnet_b1 (pretrained = False , ** kwargs ):
857856 """ EfficientNet-B1 """
858- # NOTE for train, drop_rate should be 0.2
859- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
857+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
860858 model = _gen_efficientnet (
861859 'efficientnet_b1' , channel_multiplier = 1.0 , depth_multiplier = 1.1 , pretrained = pretrained , ** kwargs )
862860 return model
@@ -865,8 +863,7 @@ def efficientnet_b1(pretrained=False, **kwargs):
865863@register_model
866864def efficientnet_b2 (pretrained = False , ** kwargs ):
867865 """ EfficientNet-B2 """
868- # NOTE for train, drop_rate should be 0.3
869- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
866+ # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
870867 model = _gen_efficientnet (
871868 'efficientnet_b2' , channel_multiplier = 1.1 , depth_multiplier = 1.2 , pretrained = pretrained , ** kwargs )
872869 return model
@@ -875,8 +872,7 @@ def efficientnet_b2(pretrained=False, **kwargs):
875872@register_model
876873def efficientnet_b3 (pretrained = False , ** kwargs ):
877874 """ EfficientNet-B3 """
878- # NOTE for train, drop_rate should be 0.3
879- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
875+ # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
880876 model = _gen_efficientnet (
881877 'efficientnet_b3' , channel_multiplier = 1.2 , depth_multiplier = 1.4 , pretrained = pretrained , ** kwargs )
882878 return model
@@ -885,8 +881,7 @@ def efficientnet_b3(pretrained=False, **kwargs):
885881@register_model
886882def efficientnet_b4 (pretrained = False , ** kwargs ):
887883 """ EfficientNet-B4 """
888- # NOTE for train, drop_rate should be 0.4
889- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
884+ # NOTE for train, drop_rate should be 0.4, drop_connect_rate should be 0.2
890885 model = _gen_efficientnet (
891886 'efficientnet_b4' , channel_multiplier = 1.4 , depth_multiplier = 1.8 , pretrained = pretrained , ** kwargs )
892887 return model
@@ -895,8 +890,7 @@ def efficientnet_b4(pretrained=False, **kwargs):
895890@register_model
896891def efficientnet_b5 (pretrained = False , ** kwargs ):
897892 """ EfficientNet-B5 """
898- # NOTE for train, drop_rate should be 0.4
899- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
893+ # NOTE for train, drop_rate should be 0.4, drop_connect_rate should be 0.2
900894 model = _gen_efficientnet (
901895 'efficientnet_b5' , channel_multiplier = 1.6 , depth_multiplier = 2.2 , pretrained = pretrained , ** kwargs )
902896 return model
@@ -905,8 +899,7 @@ def efficientnet_b5(pretrained=False, **kwargs):
905899@register_model
906900def efficientnet_b6 (pretrained = False , ** kwargs ):
907901 """ EfficientNet-B6 """
908- # NOTE for train, drop_rate should be 0.5
909- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
902+ # NOTE for train, drop_rate should be 0.5, drop_connect_rate should be 0.2
910903 model = _gen_efficientnet (
911904 'efficientnet_b6' , channel_multiplier = 1.8 , depth_multiplier = 2.6 , pretrained = pretrained , ** kwargs )
912905 return model
@@ -915,8 +908,7 @@ def efficientnet_b6(pretrained=False, **kwargs):
915908@register_model
916909def efficientnet_b7 (pretrained = False , ** kwargs ):
917910 """ EfficientNet-B7 """
918- # NOTE for train, drop_rate should be 0.5
919- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
911+ # NOTE for train, drop_rate should be 0.5, drop_connect_rate should be 0.2
920912 model = _gen_efficientnet (
921913 'efficientnet_b7' , channel_multiplier = 2.0 , depth_multiplier = 3.1 , pretrained = pretrained , ** kwargs )
922914 return model
@@ -949,8 +941,7 @@ def efficientnet_el(pretrained=False, **kwargs):
949941@register_model
950942def efficientnet_cc_b0_4e (pretrained = False , ** kwargs ):
951943 """ EfficientNet-CondConv-B0 w/ 8 Experts """
952- # NOTE for train, drop_rate should be 0.2
953- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
944+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
954945 model = _gen_efficientnet_condconv (
955946 'efficientnet_cc_b0_4e' , channel_multiplier = 1.0 , depth_multiplier = 1.0 , pretrained = pretrained , ** kwargs )
956947 return model
@@ -959,8 +950,7 @@ def efficientnet_cc_b0_4e(pretrained=False, **kwargs):
959950@register_model
960951def efficientnet_cc_b0_8e (pretrained = False , ** kwargs ):
961952 """ EfficientNet-CondConv-B0 w/ 8 Experts """
962- # NOTE for train, drop_rate should be 0.2
963- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
953+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
964954 model = _gen_efficientnet_condconv (
965955 'efficientnet_cc_b0_8e' , channel_multiplier = 1.0 , depth_multiplier = 1.0 , experts_multiplier = 2 ,
966956 pretrained = pretrained , ** kwargs )
@@ -969,8 +959,7 @@ def efficientnet_cc_b0_8e(pretrained=False, **kwargs):
969959@register_model
970960def efficientnet_cc_b1_8e (pretrained = False , ** kwargs ):
971961 """ EfficientNet-CondConv-B1 w/ 8 Experts """
972- # NOTE for train, drop_rate should be 0.2
973- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
962+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
974963 model = _gen_efficientnet_condconv (
975964 'efficientnet_cc_b1_8e' , channel_multiplier = 1.0 , depth_multiplier = 1.1 , experts_multiplier = 2 ,
976965 pretrained = pretrained , ** kwargs )
@@ -1008,7 +997,7 @@ def tf_efficientnet_b2(pretrained=False, **kwargs):
1008997
1009998
1010999@register_model
1011- def tf_efficientnet_b3 (pretrained = False , num_classes = 1000 , in_chans = 3 , ** kwargs ):
1000+ def tf_efficientnet_b3 (pretrained = False , ** kwargs ):
10121001 """ EfficientNet-B3. Tensorflow compatible variant """
10131002 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
10141003 kwargs ['pad_type' ] = 'same'
@@ -1090,7 +1079,7 @@ def tf_efficientnet_b2_ap(pretrained=False, **kwargs):
10901079
10911080
10921081@register_model
1093- def tf_efficientnet_b3_ap (pretrained = False , num_classes = 1000 , in_chans = 3 , ** kwargs ):
1082+ def tf_efficientnet_b3_ap (pretrained = False , ** kwargs ):
10941083 """ EfficientNet-B3. Tensorflow compatible variant """
10951084 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
10961085 kwargs ['pad_type' ] = 'same'
@@ -1186,8 +1175,7 @@ def tf_efficientnet_el(pretrained=False, **kwargs):
11861175@register_model
11871176def tf_efficientnet_cc_b0_4e (pretrained = False , ** kwargs ):
11881177 """ EfficientNet-CondConv-B0 w/ 4 Experts. Tensorflow compatible variant """
1189- # NOTE for train, drop_rate should be 0.2
1190- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
1178+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
11911179 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
11921180 kwargs ['pad_type' ] = 'same'
11931181 model = _gen_efficientnet_condconv (
@@ -1198,8 +1186,7 @@ def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs):
11981186@register_model
11991187def tf_efficientnet_cc_b0_8e (pretrained = False , ** kwargs ):
12001188 """ EfficientNet-CondConv-B0 w/ 8 Experts. Tensorflow compatible variant """
1201- # NOTE for train, drop_rate should be 0.2
1202- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
1189+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
12031190 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
12041191 kwargs ['pad_type' ] = 'same'
12051192 model = _gen_efficientnet_condconv (
@@ -1210,8 +1197,7 @@ def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs):
12101197@register_model
12111198def tf_efficientnet_cc_b1_8e (pretrained = False , ** kwargs ):
12121199 """ EfficientNet-CondConv-B1 w/ 8 Experts. Tensorflow compatible variant """
1213- # NOTE for train, drop_rate should be 0.2
1214- #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
1200+ # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
12151201 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
12161202 kwargs ['pad_type' ] = 'same'
12171203 model = _gen_efficientnet_condconv (
@@ -1262,7 +1248,6 @@ def mixnet_xxl(pretrained=False, **kwargs):
12621248 """Creates a MixNet Double Extra Large model.
12631249 Not a paper spec, experimental def by RW w/ depth scaling.
12641250 """
1265- # kwargs['drop_connect_rate'] = 0.2
12661251 model = _gen_mixnet_m (
12671252 'mixnet_xxl' , channel_multiplier = 2.4 , depth_multiplier = 1.3 , pretrained = pretrained , ** kwargs )
12681253 return model
0 commit comments